Bousfield G R, Ward D N
Biochim Biophys Acta. 1986 Mar 14;885(3):327-34. doi: 10.1016/0167-4889(86)90248-x.
After dissociating equine gonadotropins as a function of time at pH 3, we examined them by radioligand assay and sodium dodecyl sulfate polyacrylamide gel electrophoresis under nondissociating conditions (low, 0.1% SDS). Equine follicle-stimulating hormone (FSH) rapidly lost its receptor-binding activity, and low SDS-polyacrylamide gels demonstrated dissociation into subunits. Maximum dissociation occurred after 20-30 min of pH 3 incubation. Equine luteinizing hormone (LH), however, retained most biologic activity and was largely intact after 72 h of pH 3 incubation. Dose-response curves of acid-treated equine LH and FSH and intact equine LH and FSH were compared in five types of radioligand receptor assays. LH and FSH receptor-binding activities of equine LH were unaffected by pH 3. Equine LH showed 19- and 32-times more activity in the rat testis FSH assay than it did in chicken or horse FSH assays, respectively, directly demonstrating the intrinsic FSH receptor-binding activity of equine LH and the relative lack of specificity for these hormone preparations of the rat FSH receptor. Acid-treated 95% of its biologic activity in FSH assays. In LH assays, the slight (0.2%) activity of equine FSH was relatively unaffected by acid treatment, suggesting that contamination by equine LH accounts for this activity.