Suppr超能文献

一种新的安全性能函数标定方法。

A new approach for calibrating safety performance functions.

机构信息

Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816-2450, USA.

出版信息

Accid Anal Prev. 2018 Oct;119:188-194. doi: 10.1016/j.aap.2018.07.023. Epub 2018 Jul 23.

Abstract

Safety performance functions (SPFs) are statistical regression models used for estimating crash counts by roadway facility classification. They are required for identifying high crash risk locations, assessing the effectiveness of safety countermeasures and comparing road designs in terms of safety. Roadway agencies may opt to develop local SPFs or adopt them from elsewhere such as the national Highway Safety Manual (HSM), provided by the American Association of State Highway and Transportation Officials. The HSM offers a simple technique to calibrate its SPFs to conditions of specific jurisdictions. A more recent calibration technique, also known as the calibration function, is similar to that of the HSM. In this research, we develop SPFs of total crashes for rural divided multilane highway segments in four states. The states are Florida, Ohio, California and Washington. We also calibrate each SPF to each state using the HSM calibration method and the calibration function. Furthermore, we propose the use of the K nearest neighbor data mining method for calibrating SPFs. According to the goodness of fit (GOF) results, our proposed calibration method performs better than the other two methods.

摘要

安全性能函数(SPFs)是用于通过道路设施分类估算碰撞次数的统计回归模型。它们用于识别高碰撞风险位置,评估安全措施的有效性以及根据安全性比较道路设计。道路机构可以选择开发本地 SPF 或从其他地方(例如美国州际公路和运输官员协会提供的国家公路安全手册(HSM))采用它们。HSM 提供了一种简单的技术,可以将其 SPF 校准到特定司法管辖区的条件。最近的校准技术,也称为校准函数,与 HSM 类似。在这项研究中,我们为佛罗里达州,俄亥俄州,加利福尼亚州和华盛顿州的四个州的农村分向多车道公路段开发了总碰撞的 SPF。我们还使用 HSM 校准方法和校准函数对每个 SPF 进行校准。此外,我们提出使用 K 最近邻数据挖掘方法来校准 SPF。根据拟合优度(GOF)结果,我们提出的校准方法比其他两种方法表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验