Suppr超能文献

基于空间-光谱中式餐馆过程混合模型的高光谱图像聚类

[Clustering of Hyperspectral Image Based on Spatial-Spectral Chinese Restaurant Process Mixture Model].

作者信息

Shu Yang, Li Jing, He Shi, Tang Hong, Wang Na, Shen Li, Du Hong-yue

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Apr;36(4):1158-62.

Abstract

The classification of hyperspectral images is one of the most important study fields. The spectral information is used in traditional classification of hyperspectral images, while the spatial correlativity information is ignored. To solve this problem, a novel model called spatial-spectral Chinese restaurant process (ssCRP) is proposed to cluster the hyperspectral images, which is an extension of Chinese restaurant process. Both the spatial and spectral information are considered in the modeling and inference of the method. The proposed model clusters the hyperspectral images better than tradional methods and satisfies the requirement of hyperspectral image clustering. Firstly, in order to consider both spatial and spectral information, a new similarity measurement is defined withthe exponential decay function based on the spatial distance and spectral angle among pixels. Then, each pixel is associated with a table based on the table construction by considering the similarity. Finally, each table is allocated with a dish which corresponds to a cluster. Thus, each pixel of the hyperspectral image is allocated with a clustering label. The true hyperspectral image collected by airborne visible infrared imaging spectrometer (AVIRIS) is used to evaluate the performance of our model. Experimental results indicate that the proposed model outperforms traditional K-means and ISODATA. Compared with those of the two methods, the result of the proposed model is more regular with lower salt-and-pepper effect with higher spatial consistency. The classification accuracy of the proposed model reaches to 63.57% and the Kappa coefficient is 0.632 3, much higher than those of K-means and ISODATA. Meanwhile, the edges of the result of our model are well preserved.

摘要

高光谱图像分类是最重要的研究领域之一。在高光谱图像的传统分类中使用了光谱信息,而空间相关性信息被忽略了。为了解决这个问题,提出了一种名为空间 - 光谱中餐厅过程(ssCRP)的新模型来对高光谱图像进行聚类,它是中餐厅过程的扩展。该方法在建模和推理过程中同时考虑了空间和光谱信息。所提出的模型比传统方法能更好地对高光谱图像进行聚类,满足高光谱图像聚类的要求。首先,为了同时考虑空间和光谱信息,基于像素间的空间距离和光谱角,利用指数衰减函数定义了一种新的相似性度量。然后,通过考虑相似性,基于表格构建将每个像素与一个表格相关联。最后,为每个表格分配一道对应一个聚类的菜肴。这样,高光谱图像的每个像素都被分配了一个聚类标签。使用机载可见红外成像光谱仪(AVIRIS)采集的真实高光谱图像来评估我们模型的性能。实验结果表明,所提出的模型优于传统的K均值和迭代自组织数据分析技术(ISODATA)。与这两种方法相比,所提出模型的结果更规则,椒盐效应更低,空间一致性更高。所提出模型的分类精度达到63.57%,卡帕系数为0.632 3,远高于K均值和ISODATA。同时,我们模型结果的边缘得到了很好的保留。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验