Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
Phys Chem Chem Phys. 2018 Aug 8;20(31):20575-20587. doi: 10.1039/c8cp02346h.
Surface energy is a fundamental property of metallic nanoparticles (MeNPs), which plays a crucial role in nucleation and growth and has strong implications for the application and environmental impact of MeNPs. Surface energy (J m-2) can be size dependent, but experimental data on surface energy trends for MeNPs are inconclusive. Computational chemistry may resolve the issue, but the location and area of the surface used for scaling, which dramatically influences the outcome and interpretation, has not been properly investigated. The size dependency of the surface energy can only be determined by scaling to the thermodynamic surface of tension. To identify this, we have derived a generalized Tolman approach for non-spherical particles, which is used to analyze the thermodynamic consistency of various surface definitions. Only the physical surface, defined here, is consistent with the surface of tension. Scaling of recent computational data for faceted MeNPs to this surface yields a low size dependency of surface energy, in good agreement with the Tolman lengths corresponding to its interfacial position. We find Tolman lengths of -0.03 nm for icosahedra and -0.04 nm for cuboctahedra of gold or silver. With this result, our approach can be used to quantify the twinning energy for icosahedral nanoparticles, being ∼0.06 J per m2 twin area. To understand the unorthodox negative Tolman lengths, we have analyzed the surface energetics of the solid-gas interface of metals in relation to the liquid-vapor interface of water. Surface entropy is found to be imperative in determining the size dependence of surface free energy. At room temperature, the influence of surface entropy on surface enthalpy is much smaller for metals than for water. It explains why these two interfaces have opposite size dependencies of the surface Gibbs free energy and opposite signs of the Tolman length. For water, forming nanodroplets or nanobubbles, the Tolman length is negative (∼-0.014 nm) for the surface enthalpy, but positive (∼+0.06 ± 0.02 nm) for the surface Gibbs free energy. For MeNPs at room temperature, both entities are negative, but at high temperature, the increased surface entropy term may cause the size dependency of surface Gibbs free energy to become reversed.
表面能是金属纳米粒子(MeNPs)的基本性质,它在成核和生长中起着至关重要的作用,对 MeNPs 的应用和环境影响具有重要意义。表面能(J m-2)可能依赖于尺寸,但关于 MeNPs 表面能趋势的实验数据尚无定论。计算化学可能会解决这个问题,但用于缩放的表面的位置和面积对结果和解释有很大影响,尚未得到适当的研究。只有通过对张力热力学表面进行缩放,才能确定表面能的尺寸依赖性。为了确定这一点,我们为非球形颗粒推导了一个广义的 Tolman 方法,用于分析各种表面定义的热力学一致性。只有在这里定义的物理表面与张力表面一致。将最近针对有面 MeNPs 的计算数据缩放到这个表面上,得到表面能的尺寸依赖性较低,与相应的界面位置的 Tolman 长度很好地吻合。我们发现金或银的二十面体的 Tolman 长度为-0.03nm,而八面体的 Tolman 长度为-0.04nm。有了这个结果,我们的方法可以用来量化二十面体纳米粒子的孪晶能,每个孪晶面积约为 0.06J。为了理解非正统的负 Tolman 长度,我们分析了金属固-气界面与水的液-气界面之间的表面能。发现表面熵对于确定表面自由能的尺寸依赖性至关重要。在室温下,对于金属,表面熵对表面焓的影响比水小得多。这解释了为什么这两个界面的表面吉布斯自由能的尺寸依赖性相反,Tolman 长度的符号也相反。对于水,形成纳米液滴或纳米气泡,表面焓的 Tolman 长度为负(约-0.014nm),而表面吉布斯自由能的 Tolman 长度为正(约+0.06±0.02nm)。对于室温下的 MeNPs,这两个实体都是负的,但在高温下,增加的表面熵项可能会导致表面吉布斯自由能的尺寸依赖性发生反转。