Kim Byung Hyo, Heo Junyoung, Park Jungwon
Department of Fiber Engineering and Organic Materials Soongsil University Seoul 06978 Republic of Korea.
Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea.
Small Sci. 2020 Dec 13;1(1):2000045. doi: 10.1002/smsc.202000045. eCollection 2021 Jan.
The 3D atomic arrangements of materials determine the free energy landscape, thus governing the physical and catalytic properties of those materials. The 3D structures of nanoparticles can deviate from the periodic atomic arrangement of their bulk counterparts due to the dominance of surface dangling bonds, defects, and dislocations. One approach to understand the structure of nanoparticles and their resulting unique properties involves precise probing of the 3D positions of all constituent atoms of individual nanoparticles. The 3D electron tomography and Brownian one particle reconstruction allow investigation of the 3D atomic positions of nanoparticles. Both methods use transmission electron microscopy (TEM) or scanning TEM (STEM) images of nanoparticles with different projection angles and collect their phase information in reciprocal space to reconstruct the 3D structure of the particles. The thus-reconstructed 3D maps of metal nanoparticles are highly resolved, facilitating the determination of their atomic coordinates. Grain boundary, dislocation, and lattice expansion are observed on the 3D atomic maps. On the basis of the 3D atomic maps, the physical properties of individual nanoparticles can be accurately predicted, enabling purpose-driven synthesis.
材料的三维原子排列决定了自由能态势,从而决定了这些材料的物理和催化性能。由于表面悬空键、缺陷和位错占主导地位,纳米颗粒的三维结构可能与其块状对应物的周期性原子排列有所不同。理解纳米颗粒结构及其独特性能的一种方法是精确探测单个纳米颗粒所有组成原子的三维位置。三维电子断层扫描和布朗单粒子重建技术可用于研究纳米颗粒的三维原子位置。这两种方法都使用不同投影角度的纳米颗粒的透射电子显微镜(TEM)或扫描TEM(STEM)图像,并在倒易空间中收集它们的相位信息,以重建颗粒的三维结构。由此重建的金属纳米颗粒三维图谱具有高分辨率,便于确定其原子坐标。在三维原子图谱上可以观察到晶界、位错和晶格膨胀。基于三维原子图谱,可以准确预测单个纳米颗粒的物理性质,从而实现目标驱动的合成。