Institut für Genetik, Technische Universität Braunschweig.
Fachbereich Biologie, Universität Konstanz, Germany.
Genome Biol Evol. 2018 Sep 1;10(9):2310-2325. doi: 10.1093/gbe/evy164.
The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.
线粒体的建立被视为真核生物起源的一个变革性步骤。随着线粒体的出现,生物能量学获得了自由,可以探索新的进化空间,从而导致了今天所知的真核生物辐射。细菌内共生体与古菌宿主的紧密结合伴随着大量的内共生基因转移,导致线粒体基因组非常小,只是原始进入细菌基因组的幽灵。这种内共生基因转移导致许多基因的丢失,既有来自细菌共生体的,也有来自古菌宿主的。冗余功能基因的丢失导致宿主的大部分代谢被来自内共生体的基因所取代。糖酵解就是这样一种代谢途径,其中原始的古菌酶被来自内共生体的细菌酶所取代。糖酵解是一种主要的分解代谢途径,它从葡萄糖的分解中提供细胞能量。真核生物的糖酵解途径似乎起源于细菌,在研究充分的模式真核生物中,它发生在细胞质中。相比之下,在这里我们证明了糖酵解的后几个阶段发生在不等鞭毛类(Stramenopiles)的线粒体中,不等鞭毛类是真核生物中一个多样化且具有重要生态意义的谱系。尽管我们的工作基于不等鞭毛类的有限样本,但它为糖酵解酶在不等鞭毛类中的线粒体靶向可能代表真核生物的祖先状态提供了可能性。