Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712, USA.
Sensors (Basel). 2018 Jul 28;18(8):2452. doi: 10.3390/s18082452.
Exchange of location and sensor data among connected and automated vehicles will demand accurate global referencing of the digital maps currently being developed to aid positioning for automated driving. This paper explores the limit of such maps' globally-referenced position accuracy when the mapping agents are equipped with low-cost Global Navigation Satellite System (GNSS) receivers performing standard code-phase-based navigation, and presents a globally-referenced electro-optical simultaneous localization and mapping pipeline, called GEOSLAM, designed to achieve this limit. The key accuracy-limiting factor is shown to be the asymptotic average of the error sources that impair standard GNSS positioning. Asymptotic statistics of each GNSS error source are analyzed through both simulation and empirical data to show that sub-50-cm accurate digital mapping is feasible in the horizontal plane after multiple mapping sessions with standard GNSS, but larger biases persist in the vertical direction. GEOSLAM achieves this accuracy by (i) incorporating standard GNSS position estimates in the visual SLAM framework, (ii) merging digital maps from multiple mapping sessions, and (iii) jointly optimizing structure and motion with respect to time-separated GNSS measurements.
在连网和自动驾驶车辆之间交换位置和传感器数据,将需要对当前正在开发的数字地图进行准确的全球参考,以帮助自动驾驶定位。本文探讨了在配备低成本全球导航卫星系统(GNSS)接收器的映射代理执行基于标准码相位的导航时,这些地图的全球参考位置精度的限制,并提出了一种名为 GEOSLAM 的全球参考光电同时定位和制图管道,旨在实现这一限制。结果表明,限制精度的关键因素是标准 GNSS 定位中损害位置的误差源的渐近平均值。通过仿真和经验数据对每个 GNSS 误差源的渐近统计进行了分析,结果表明,在使用标准 GNSS 进行多次映射后,在水平面上可以实现亚 50 厘米的精确数字制图,但在垂直方向上仍存在较大偏差。GEOSLAM 通过以下三种方法实现了这一精度:(i)在视觉 SLAM 框架中结合标准 GNSS 位置估计;(ii)合并多个映射会话的数字地图;(iii)联合优化相对于时间分离的 GNSS 测量的结构和运动。