Dai Kai, Sun Bohua, Wu Guanpu, Zhao Shuai, Ma Fangwu, Zhang Yufei, Wu Jian
State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China.
Automotive Data Center, CATARC, Tianjin 300000, China.
J Imaging. 2023 Feb 20;9(2):52. doi: 10.3390/jimaging9020052.
LiDAR-based simultaneous localization and mapping (SLAM) and online localization methods are widely used in autonomous driving, and are key parts of intelligent vehicles. However, current SLAM algorithms have limitations in map drift and localization algorithms based on a single sensor have poor adaptability to complex scenarios. A SLAM and online localization method based on multi-sensor fusion is proposed and integrated into a general framework in this paper. In the mapping process, constraints consisting of normal distributions transform (NDT) registration, loop closure detection and real time kinematic (RTK) global navigation satellite system (GNSS) position for the front-end and the pose graph optimization algorithm for the back-end, which are applied to achieve an optimized map without drift. In the localization process, the error state Kalman filter (ESKF) fuses LiDAR-based localization position and vehicle states to realize more robust and precise localization. The open-source KITTI dataset and field tests are used to test the proposed method. The method effectiveness shown in the test results achieves 5-10 cm mapping accuracy and 20-30 cm localization accuracy, and it realizes online autonomous driving in complex scenarios.
基于激光雷达的同步定位与地图构建(SLAM)以及在线定位方法在自动驾驶中被广泛应用,并且是智能车辆的关键部分。然而,当前的SLAM算法存在地图漂移问题,且基于单一传感器的定位算法对复杂场景的适应性较差。本文提出了一种基于多传感器融合的SLAM与在线定位方法,并将其集成到一个通用框架中。在地图构建过程中,由正态分布变换(NDT)配准、回环检测以及前端的实时动态(RTK)全球导航卫星系统(GNSS)位置和后端的位姿图优化算法组成的约束条件被应用,以实现无漂移的优化地图。在定位过程中,误差状态卡尔曼滤波器(ESKF)融合基于激光雷达的定位位置和车辆状态,以实现更稳健、精确的定位。使用开源的KITTI数据集和现场测试对所提出的方法进行测试。测试结果表明该方法的有效性,实现了5-10厘米的地图构建精度和20-30厘米的定位精度,并在复杂场景中实现了在线自动驾驶。