Suppr超能文献

副交感神经系统及胆碱能机制在支气管高反应性中的作用。

Role of the parasympathetic nervous system and of cholinergic mechanisms in bronchial hyperreactivity.

作者信息

Hahn H L

出版信息

Bull Eur Physiopathol Respir. 1986;22 Suppl 7:112-42.

PMID:3006841
Abstract

The parasympathetic nervous system of the respiratory tract is involved in the control of airway calibre in three ways: through afferent nerve pathways (pulmonary reflexes); through efferent nerve pathways (reflexes, interaction between efferent vagus and mediators or modulating transmitter substances) and through cholinergic muscarinic receptors and postreceptor mechanisms in the target organ. To what extent do these mechanisms contribute to airway hyperreactivity? Pulmonary reflexes: Reflex bronchoconstriction has been established in divided lung experiments for histamine and in experiments involving an isolated segment of trachea for SO2. A reflex pathway is the most likely explanation for the heightened reactivity induced by aerosols of prostaglandin E2 and by maximal respiratory manoeuvers. Reflex bronchoconstriction is mediated through rapidly adapting ("irritant") receptors and through C-fibre endings. The influence of C-fibre endings is greater than hitherto suspected and many effects ascribed to irritant receptors are probably due to stimulation of C-fibre endings which outnumber myelinated fibres 3-4 to 1. From studies on the control of respiration (which reflect more directly the state of sensory receptors in the airways than studies of airway calibre) it appears that the activity of C-fibre endings increases during ozone-induced hyperreactivity. This could explain the increased bronchial reactivity seen in this condition. Interaction: Aerosols of serotonin cause bronchoconstriction when the vagus nerve is intact but have little effect during vagal block. This is an effect neither on afferent receptors nor on the end organ, but on the efferent nerve pathway. Interaction effects of this type ("cholinergic facilitation") are frequent and may be more important quantitatively than reflex effects. From data on serotonin and by analogy to other systems it appears that preganglionic and ganglionic sites are important points of interaction. Parasympathetic ganglia are located in the airway wall. Several transmitter substances have been identified in airway ganglia and in autonomic nerves, sensory and motor. Thus there seem to be convergent inputs capable of modulating transmission through the ganglia. An altered balance of converging ganglionic inputs may cause hyperreactivity. Receptors in airway smooth muscle may not be a homogeneous population. Muscarinic receptors are being classified into subgroups and the existence of at least 3 subtypes: M-1, M-2 and M-3 has been postulated. Their distribution depends on the tissue studied. They differ in agonist affinity messenger systems.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

呼吸道的副交感神经系统通过三种方式参与气道管径的控制

通过传入神经通路(肺反射);通过传出神经通路(反射、传出迷走神经与介质或调节递质物质之间的相互作用)以及通过靶器官中的胆碱能毒蕈碱受体和受体后机制。这些机制在多大程度上导致气道高反应性?肺反射:在肺分离实验中已证实组胺可引起反射性支气管收缩,在涉及气管孤立节段的实验中二氧化硫也可引起。反射通路最有可能解释前列腺素E2气雾剂和最大呼吸动作所诱导的反应性增强。反射性支气管收缩是通过快速适应性(“刺激性”)受体和C纤维末梢介导的。C纤维末梢的影响比以往认为的更大,许多归因于刺激性受体的效应可能是由于C纤维末梢受到刺激,C纤维末梢与有髓纤维的数量比为3 - 4比1。从对呼吸控制的研究(比气道管径研究更直接地反映气道中感觉受体的状态)来看,在臭氧诱导的高反应性期间,C纤维末梢的活性增加。这可以解释在这种情况下所见的支气管反应性增加。相互作用:当迷走神经完整时,血清素气雾剂可引起支气管收缩,但在迷走神经阻滞期间作用很小。这既不是对传入受体的作用,也不是对终末器官的作用,而是对传出神经通路的作用。这种类型的相互作用效应(“胆碱能易化”)很常见,在数量上可能比反射效应更重要。从血清素的数据以及类推到其他系统来看,节前和神经节部位是重要的相互作用点。副交感神经节位于气道壁内。在气道神经节以及自主神经、感觉神经和运动神经中已鉴定出几种递质物质。因此似乎存在能够调节通过神经节传递的汇聚性输入。汇聚性神经节输入平衡的改变可能导致高反应性。气道平滑肌中的受体可能不是同质群体。毒蕈碱受体正在被分类为亚组,并且已推测至少存在3种亚型:M - 1、M - 2和M - 3。它们的分布取决于所研究的组织。它们在激动剂亲和力信使系统方面存在差异。(摘要截取自400字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验