Suppr超能文献

野生型扩增赋予exon14 突变型非小细胞肺癌对克唑替尼的耐药性。

Amplification of Wild-type Imparts Resistance to Crizotinib in Exon 14 Mutant Non-Small Cell Lung Cancer.

机构信息

Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.

Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.

出版信息

Clin Cancer Res. 2018 Dec 1;24(23):5963-5976. doi: 10.1158/1078-0432.CCR-18-0876. Epub 2018 Aug 2.

Abstract

PURPOSE

MET inhibitors can be effective therapies in patients with exon 14 (ex14) mutant non-small cell lung cancer (NSCLC). However, long-term efficacy is limited by the development of drug resistance. In this study, we characterize acquired amplification of wild-type (WT) as a molecular mechanism behind crizotinib resistance in three cases of ex14-mutant NSCLC and propose a combination therapy to target it.

EXPERIMENTAL DESIGN

The patient-derived cell line and xenograft (PDX) DFCI358 were established from a crizotinib-resistant ex14-mutant patient tumor with massive focal amplification of WT . To characterize the mechanism of KRAS-mediated resistance, molecular signaling was analyzed in the parental cell line and its KRAS siRNA-transfected derivative. Sensitivity of the cell line to ligand stimulation was assessed and KRAS-dependent expression of EGFR ligands was quantified. Drug combinations were screened for efficacy and using viability and apoptotic assays.

RESULTS

amplification is a recurrent genetic event in crizotinib-resistant ex14-mutant NSCLC. The key characteristics of this genetic signature include uncoupling MET from downstream effectors, relative insensitivity to dual MET/MEK inhibition due to compensatory induction of PI3K signaling, KRAS-induced expression of EGFR ligands and hypersensitivity to ligand-dependent and independent activation, and reliance on PI3K signaling upon MET inhibition.

CONCLUSIONS

Using patient-derived cell line and xenografts, we characterize the mechanism of crizotinib resistance mediated by amplification in ex14-mutant NSCLC and demonstrate the superior efficacy of the dual MET/PI3K inhibition as a therapeutic strategy addressing this resistance mechanism.

摘要

目的

MET 抑制剂在存在外显子 14(exon14)突变的非小细胞肺癌(NSCLC)患者中可能是有效的治疗方法。然而,长期疗效受到耐药性发展的限制。在这项研究中,我们对三种exon14 突变 NSCLC 中克唑替尼耐药背后的野生型(WT)扩增进行了特征描述,并提出了一种针对该机制的联合治疗方案。

实验设计

从克唑替尼耐药exon14 突变患者肿瘤中建立了患者衍生细胞系和异种移植(PDX)DFCI358,该肿瘤具有 WT 的大量局灶性扩增。为了描述 KRAS 介导的耐药机制,在亲本细胞系及其 KRAS siRNA 转染的衍生物中分析了分子信号。评估了细胞系对配体刺激的敏感性,并定量了 KRAS 依赖性 EGFR 配体的表达。使用活力和凋亡测定法筛选了针对该机制的药物组合的疗效。

结果

扩增是克唑替尼耐药 exon14 突变 NSCLC 中的一种反复出现的遗传事件。该遗传特征的关键特征包括使 MET 与下游效应物解偶联,由于 PI3K 信号的代偿性诱导,对双 MET/MEK 抑制相对不敏感,KRAS 诱导的 EGFR 配体表达以及对配体依赖性和非依赖性激活的过度敏感,以及在 MET 抑制时对 PI3K 信号的依赖。

结论

使用患者衍生的细胞系和异种移植,我们对 exon14 突变 NSCLC 中由扩增介导的克唑替尼耐药机制进行了特征描述,并证明了双重 MET/PI3K 抑制作为针对该耐药机制的治疗策略的优越性。

相似文献

1
Amplification of Wild-type Imparts Resistance to Crizotinib in Exon 14 Mutant Non-Small Cell Lung Cancer.
Clin Cancer Res. 2018 Dec 1;24(23):5963-5976. doi: 10.1158/1078-0432.CCR-18-0876. Epub 2018 Aug 2.
2
Activation of KRAS Mediates Resistance to Targeted Therapy in MET Exon 14-mutant Non-small Cell Lung Cancer.
Clin Cancer Res. 2019 Feb 15;25(4):1248-1260. doi: 10.1158/1078-0432.CCR-18-1640. Epub 2018 Oct 23.
3
KRAS Inhibitor Resistance in -Amplified Non-Small Cell Lung Cancer Induced By RAS- and Non-RAS-Mediated Cell Signaling Mechanisms.
Clin Cancer Res. 2021 Oct 15;27(20):5697-5707. doi: 10.1158/1078-0432.CCR-21-0856. Epub 2021 Aug 7.
5
Emergence of Preexisting MET Y1230C Mutation as a Resistance Mechanism to Crizotinib in NSCLC with MET Exon 14 Skipping.
J Thorac Oncol. 2017 Jan;12(1):137-140. doi: 10.1016/j.jtho.2016.09.119. Epub 2016 Sep 22.
7
Co-occurring Alterations in the RAS-MAPK Pathway Limit Response to MET Inhibitor Treatment in MET Exon 14 Skipping Mutation-Positive Lung Cancer.
Clin Cancer Res. 2020 Jan 15;26(2):439-449. doi: 10.1158/1078-0432.CCR-19-1667. Epub 2019 Sep 23.
9
KRAS-mutant non-small cell lung cancer (NSCLC) therapy based on tepotinib and omeprazole combination.
Cell Commun Signal. 2024 Jun 12;22(1):324. doi: 10.1186/s12964-024-01667-x.
10
Inhibition of ABCB1 Overcomes Cancer Stem Cell-like Properties and Acquired Resistance to MET Inhibitors in Non-Small Cell Lung Cancer.
Mol Cancer Ther. 2015 Nov;14(11):2433-40. doi: 10.1158/1535-7163.MCT-15-0050. Epub 2015 Sep 8.

引用本文的文献

2
Responsiveness of different MET tumour alterations to type I and type II MET inhibitors.
Clin Transl Med. 2025 May;15(5):e70338. doi: 10.1002/ctm2.70338.
3
Therapy-induced senescence is a transient drug resistance mechanism in breast cancer.
Mol Cancer. 2025 May 1;24(1):128. doi: 10.1186/s12943-025-02310-0.
4
Expert consensus on the diagnosis and treatment of non-small cell lung cancer with MET alteration.
Cancer Biol Med. 2025 Apr 8;22(3):237-65. doi: 10.20892/j.issn.2095-3941.2024.0503.
5
The expanding role of the receptor tyrosine kinase MET as a therapeutic target in non-small cell lung cancer.
Cell Rep Med. 2025 Mar 18;6(3):101983. doi: 10.1016/j.xcrm.2025.101983. Epub 2025 Feb 27.
6
Advances in clinical research of MET exon 14 skipping mutations in non-small cell lung cancer.
J Cancer Res Clin Oncol. 2025 Feb 12;151(2):78. doi: 10.1007/s00432-025-06115-y.
7
MET Activation in Lung Cancer and Response to Targeted Therapies.
Cancers (Basel). 2025 Jan 16;17(2):281. doi: 10.3390/cancers17020281.
8
Genomic differences of patients with hematologic malignancies in different age groups.
Commun Biol. 2024 Dec 6;7(1):1630. doi: 10.1038/s42003-024-07293-0.
10
Cooperative genomic lesions in HRAS-mutant cancers predict resistance to farnesyltransferase inhibitors.
Oncogene. 2024 Sep;43(37):2806-2819. doi: 10.1038/s41388-024-03095-0. Epub 2024 Aug 16.

本文引用的文献

2
Acquired METD1228V Mutation and Resistance to MET Inhibition in Lung Cancer.
Cancer Discov. 2016 Dec;6(12):1334-1341. doi: 10.1158/2159-8290.CD-16-0686. Epub 2016 Sep 30.
3
Emergence of Preexisting MET Y1230C Mutation as a Resistance Mechanism to Crizotinib in NSCLC with MET Exon 14 Skipping.
J Thorac Oncol. 2017 Jan;12(1):137-140. doi: 10.1016/j.jtho.2016.09.119. Epub 2016 Sep 22.
4
Association Between Plasma Genotyping and Outcomes of Treatment With Osimertinib (AZD9291) in Advanced Non-Small-Cell Lung Cancer.
J Clin Oncol. 2016 Oct 1;34(28):3375-82. doi: 10.1200/JCO.2016.66.7162. Epub 2016 Jun 27.
5
Acquired Resistance to Crizotinib in NSCLC with MET Exon 14 Skipping.
J Thorac Oncol. 2016 Aug;11(8):1242-1245. doi: 10.1016/j.jtho.2016.06.013. Epub 2016 Jun 22.
6
MET Exon 14 Alterations in Lung Cancer: Exon Skipping Extends Half-Life.
Clin Cancer Res. 2016 Jun 15;22(12):2832-4. doi: 10.1158/1078-0432.CCR-16-0229. Epub 2016 Mar 23.
7
Novel c-Met inhibitor suppresses the growth of c-Met-addicted gastric cancer cells.
BMC Cancer. 2016 Jan 22;16:35. doi: 10.1186/s12885-016-2058-y.
9
Discovery of Inhibitors That Overcome the G1202R Anaplastic Lymphoma Kinase Resistance Mutation.
J Med Chem. 2015 Dec 10;58(23):9296-9308. doi: 10.1021/acs.jmedchem.5b01136. Epub 2015 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验