Suppr超能文献

一种基于Map/Reduce分布式计算的恒星光谱分类方法

[A Method of Stellar Spectral Classification Based on Map/Reduce Distributed Computing].

作者信息

Pan Jing-chang, Wang Jie, Jiang Bin, Luo A-li, Wei Peng, Zheng Qiang

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Aug;36(8):2651-4.

Abstract

Celestial spectrum contains a great deal of astrophysical information. Through the analysis of spectra, people can get the physical information of celestial bodies, as well as their chemical composition and atmospheric parameters. With the implementation of LAMOST, SDSS telescopes and other large-scale surveys, massive spectral data will be produced, especially along with the formal operation of LAMOST, 2 000 to 4 000 spectral data will be generated each observation night. It requires more efficient processing technology to cope with such massive spectra. Automatic classification of stellar spectra is a basic content of spectral processing. The main purpose of this paper is to research the automatic classification of massive stellar spectra. The Lick index is a set of standard indices defined in astronomical spectra to describe the spectral intensity of spectral lines, which represent the physical characteristics of spectra. Lick index is a relatively wide spectral characteristics, each line index is named after the most prominent absorption line. In this paper, the Bayesian method is used to classify stellar spectra based on Lick line index, which divides stellar spectra to three subtypes: F, G, K. First of all, Lick line index of spectra is calculated as the characteristic vector of spectra, and then Bayesian method is used to classify these spectra. For massive spectra, the computation of Lick indices and the spectral classification using Bayesian decision method are implemented on Hadoop. With use of the high throughput and good fault tolerance of HDFS, combined with the advantages of MapReduce parallel programming model, the efficiency of analysis and processing for massive spectral data have been improved significantly. The main innovative contributions of this thesis are as follows. (1) Using Lick indices as the characteristic to classify stellar spectra based on Bayesian decision method. (2) Implementing parallel computation of Lick indices and parallel classification of stellar spectra using Bayesian based on Hadoop MapReduce distributed computing framework.

摘要

天体光谱包含大量天体物理信息。通过对光谱的分析,人们可以获取天体的物理信息、化学成分以及大气参数。随着大天区面积多目标光纤光谱天文望远镜(LAMOST)、斯隆数字巡天望远镜(SDSS)等大规模巡天项目的实施,将会产生海量光谱数据,特别是随着LAMOST的正式运行,每个观测夜晚将产生2000至4000条光谱数据。这就需要更高效的处理技术来应对如此海量的光谱。恒星光谱的自动分类是光谱处理的一项基本内容。本文的主要目的是研究海量恒星光谱的自动分类。利克指数是在天文光谱中定义的一组标准指数,用于描述谱线的光谱强度,它代表了光谱的物理特征。利克指数是一种相对宽泛的光谱特征,每个线指数都以最突出的吸收线命名。本文采用贝叶斯方法基于利克线指数对恒星光谱进行分类,将恒星光谱分为F、G、K三个子类型。首先,计算光谱的利克线指数作为光谱的特征向量,然后使用贝叶斯方法对这些光谱进行分类。对于海量光谱,利克指数的计算以及使用贝叶斯决策方法进行光谱分类在Hadoop上实现。利用Hadoop分布式文件系统(HDFS)的高吞吐量和良好的容错性,结合MapReduce并行编程模型的优势,显著提高了海量光谱数据的分析和处理效率。本文的主要创新性贡献如下。(1)以利克指数为特征,基于贝叶斯决策方法对恒星光谱进行分类。(2)基于Hadoop MapReduce分布式计算框架实现利克指数的并行计算和恒星光谱的贝叶斯并行分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验