Suppr超能文献

[Outlier Data Mining and Analysis of LAMOST Stellar Spectra in Line Index Feature Space].

作者信息

Wang Guang-pei, Pan Jing-chang, Yi Zhen-ping, Wei Peng, Jiang Bin

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Oct;36(10):3364-8.

Abstract

Large scale spectrum survey will produce mass spectral data and offer chances for searching rare and unknown types of spectra, which is contribute to revealing the evolution law of the universe and the origin of life. Data mining in outlier data in sky survey can serve the purpose of finding special spectra. Line index can be used in spectra data dimension reduction, keeping the spectral physical characteristics as much as possible, and at the same time, it can effectively solve the high dimensional spectral data clustering analysis in the high computation complexity. This paper proposed a method outlier data mining and analysis for massive stellar spectrum survey data based on line index characteristics, according to this, an outlier spectral data analysis method was proposed using line index characteristics space. Experimental results demonstrated that (1) using line index as the characteristic value of the spectrum can quickly perform the outlier data mining for high dimensional spectral data, and it can solve the problem of high computation complexity of the high dimensional spectral data. (2) this outlier data mining method was conducted based on the clustering results; it can effectively finding out emission stars, late type stars, late M type stars, extremely poor metal stars, and even finding spectra data missing certain data. (3) outlier data mining in line index feature space can help to analysis of rules of special stars found in the feature space. The mothed proposed in this paper based on the characteristics of line index outlier data mining and analysis method can be applied to the study of survey data.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验