Suppr超能文献

乳球菌属乳球菌 III-A CRISPR-Cas 系统切割噬菌体 RNA。

Lactococcus lactis type III-A CRISPR-Cas system cleaves bacteriophage RNA.

机构信息

a Technology & Innovation , DuPont Nutrition and Health , Madison , WI , USA.

b Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire , Université Laval , Québec City , QC , Canada.

出版信息

RNA Biol. 2019 Apr;16(4):461-468. doi: 10.1080/15476286.2018.1502589. Epub 2018 Oct 2.

Abstract

CRISPR-Cas defends microbial cells against invading nucleic acids including viral genomes. Recent studies have shown that type III-A CRISPR-Cas systems target both RNA and DNA in a transcription-dependent manner. We previously found a type III-A system on a conjugative plasmid in Lactococcus lactis which provided resistance against virulent phages of the Siphoviridae family. Its naturally occurring spacers are oriented to generate crRNAs complementary to target phage mRNA, suggesting transcription-dependent targeting. Here, we show that only constructs whose spacers produce crRNAs complementary to the phage mRNA confer phage resistance in L. lactis. In vivo nucleic acid cleavage assays showed that cleavage of phage dsDNA genome was not detected within phage-infected L. lactis cells. On the other hand, Northern blots indicated that the lactococcal CRISPR-Cas cleaves phage mRNA in vivo. These results cannot exclude that single-stranded phage DNA is not being targeted, but phage DNA replication has been shown to be impaired.

摘要

CRISPR-Cas 系统防御微生物细胞免受入侵核酸的侵害,包括病毒基因组。最近的研究表明,III-A 型 CRISPR-Cas 系统以转录依赖的方式靶向 RNA 和 DNA。我们之前在乳球菌的一个接合质粒上发现了一个 III-A 型系统,该系统对 Siphoviridae 家族的毒性噬菌体具有抗性。其天然存在的间隔序列被定向生成与靶噬菌体 mRNA 互补的 crRNA,提示转录依赖性靶向。在这里,我们表明只有那些间隔序列产生与噬菌体 mRNA 互补的 crRNA 的构建体才能在乳球菌中赋予噬菌体抗性。体内核酸切割实验表明,在噬菌体感染的乳球菌细胞内未检测到噬菌体 dsDNA 基因组的切割。另一方面,Northern blot 表明乳球菌 CRISPR-Cas 在体内切割噬菌体 mRNA。这些结果不能排除单链噬菌体 DNA 未被靶向,但已表明噬菌体 DNA 复制受到损害。

相似文献

1
Lactococcus lactis type III-A CRISPR-Cas system cleaves bacteriophage RNA.
RNA Biol. 2019 Apr;16(4):461-468. doi: 10.1080/15476286.2018.1502589. Epub 2018 Oct 2.
2
Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis.
PLoS One. 2012;7(12):e51663. doi: 10.1371/journal.pone.0051663. Epub 2012 Dec 11.
3
Genome Engineering of Virulent Lactococcal Phages Using CRISPR-Cas9.
ACS Synth Biol. 2017 Jul 21;6(7):1351-1358. doi: 10.1021/acssynbio.6b00388. Epub 2017 Mar 30.
4
Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage.
Nature. 2019 Jun;570(7760):241-245. doi: 10.1038/s41586-019-1257-5. Epub 2019 May 29.
5
Primed CRISPR-Cas Adaptation and Impaired Phage Adsorption in Streptococcus mutans.
mSphere. 2021 May 19;6(3):e00185-21. doi: 10.1128/mSphere.00185-21.
6
A virulent phage infecting Lactococcus garvieae, with homology to Lactococcus lactis phages.
Appl Environ Microbiol. 2015 Dec;81(24):8358-65. doi: 10.1128/AEM.02603-15. Epub 2015 Sep 25.
10
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA.
Nature. 2010 Nov 4;468(7320):67-71. doi: 10.1038/nature09523.

引用本文的文献

1
CRISPR-Cas systems in enterococci.
Braz J Microbiol. 2024 Dec;55(4):3945-3957. doi: 10.1007/s42770-024-01549-x. Epub 2024 Oct 23.
2
Functional and practical insights into three lactococcal antiphage systems.
Appl Environ Microbiol. 2024 Sep 18;90(9):e0112024. doi: 10.1128/aem.01120-24. Epub 2024 Aug 13.
3
Towards the diversification of lactococcal starter and non-starter species in mesophilic dairy culture systems.
Microb Biotechnol. 2023 Sep;16(9):1745-1754. doi: 10.1111/1751-7915.14320. Epub 2023 Jul 15.
5
Expanding known viral diversity in the healthy infant gut.
Nat Microbiol. 2023 May;8(5):986-998. doi: 10.1038/s41564-023-01345-7. Epub 2023 Apr 10.
6
Type III-A CRISPR systems as a versatile gene knockdown technology.
RNA. 2022 Aug;28(8):1074-1088. doi: 10.1261/rna.079206.122. Epub 2022 May 26.
8
Unique properties of spacer acquisition by the type III-A CRISPR-Cas system.
Nucleic Acids Res. 2022 Feb 22;50(3):1562-1582. doi: 10.1093/nar/gkab1193.
9
Comprehensive Mining and Characterization of CRISPR-Cas Systems in .
Microorganisms. 2020 May 12;8(5):720. doi: 10.3390/microorganisms8050720.
10
CRISPR-Cas: more than ten years and still full of mysteries.
RNA Biol. 2019 Apr;16(4):377-379. doi: 10.1080/15476286.2019.1591659.

本文引用的文献

1
Type III CRISPR-Cas systems: when DNA cleavage just isn't enough.
Curr Opin Microbiol. 2017 Jun;37:150-154. doi: 10.1016/j.mib.2017.08.003. Epub 2017 Aug 31.
2
Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape.
Cell Host Microbe. 2017 Sep 13;22(3):343-353.e3. doi: 10.1016/j.chom.2017.07.016. Epub 2017 Aug 17.
3
Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers.
Nature. 2017 Aug 31;548(7669):543-548. doi: 10.1038/nature23467. Epub 2017 Jul 19.
4
A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems.
Science. 2017 Aug 11;357(6351):605-609. doi: 10.1126/science.aao0100. Epub 2017 Jun 29.
5
Diversity, classification and evolution of CRISPR-Cas systems.
Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.
6
Programmable type III-A CRISPR-Cas DNA targeting modules.
PLoS One. 2017 Apr 25;12(4):e0176221. doi: 10.1371/journal.pone.0176221. eCollection 2017.
8
An updated evolutionary classification of CRISPR-Cas systems.
Nat Rev Microbiol. 2015 Nov;13(11):722-36. doi: 10.1038/nrmicro3569. Epub 2015 Sep 28.
9
Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity.
Cell. 2015 May 21;161(5):1164-1174. doi: 10.1016/j.cell.2015.04.027. Epub 2015 May 7.
10
Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus.
Mol Cell. 2014 Nov 20;56(4):506-17. doi: 10.1016/j.molcel.2014.09.027. Epub 2014 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验