Department of Chemistry and Quebec Centre for Applied Materials (QCAM) , McGill University , 801 Sherbrooke Street W. , H3A 0B8 Montreal , Quebec , Canada.
Institute of Biochemistry, Biocenter, and Cluster of Excellence - Macromolecular Complexes , Goethe University Frankfurt , Max-von-Laue-Str. 9 , 60438 Frankfurt/M. , Germany.
J Am Chem Soc. 2018 Sep 5;140(35):11006-11012. doi: 10.1021/jacs.8b04681. Epub 2018 Aug 23.
The photostability of fluorescent labels comprises one of the main limitations in single-molecule fluorescence (SMF) and super-resolution imaging. An attractive strategy to increase the photostability of organic fluorophores relies on their coupling to photostabilizers, e.g., triplet excited state quenchers, rendering self-healing dyes. Herein we report the self-healing properties of trisNTA-Alexa647 fluorophores (NTA, N-nitrilotriacetic acid). Primarily designed to specifically label biomolecules containing an oligohistidine tag, we hypothesized that the increased effective concentration of Ni(II) triplet state quenchers would lead to their improved photostability. We evaluated photon output, survival time, and photon count rate of different Alexa647-labeled trisNTA constructs differing in the length and rigidity of the fluorophore- trisNTA linker. Maximum photon output enhancements of 25-fold versus Alexa647-DNA were recorded for a short tetraproline linker, superseding the solution based photostabilization by Ni(II). Steady-state and time-resolved studies illustrate that trisNTA self-healing role is associated with a dynamic excited triplet state quenching by Ni(II). Here improved photophysical/photochemical properties require for a judicious choice of linker length and rigidity, and in turn a balance between rapid dynamic triplet excited state quenching versus dynamic/static singlet excited state quenching. TrisNTA fluorophores offer superior properties for SMF allowing specific labeling and increased photostability, making them ideal candidates for extended single-molecule imaging techniques.
荧光标记的光稳定性是单分子荧光(SMF)和超分辨率成像的主要限制因素之一。提高有机荧光团光稳定性的一种有吸引力的策略是将其与光稳定剂(例如三重态激发态猝灭剂)偶联,从而形成自修复染料。本文报道了三氮杂环戊二烯基 - Alexa647 荧光团(NTA,N- 亚乙基三胺三乙酸)的自修复特性。这些荧光团最初设计用于特异性标记含有寡组氨酸标签的生物分子,我们假设增加 Ni(II)三重态猝灭剂的有效浓度将导致其光稳定性提高。我们评估了不同 Alexa647 标记的 trisNTA 结构的光子输出、存活时间和光子计数率,这些结构在荧光团 - trisNTA 接头的长度和刚性上有所不同。与 Alexa647-DNA 相比,使用短四脯氨酸接头记录到最大光子输出增强 25 倍,超过了 Ni(II)的基于溶液的光稳定化作用。稳态和时间分辨研究表明,trisNTA 的自修复作用与 Ni(II)的动态三重态激发态猝灭有关。这里改进的光物理/光化学性质需要明智地选择接头长度和刚性,从而在快速动态三重态激发态猝灭与动态/静态单重态激发态猝灭之间取得平衡。trisNTA 荧光团为 SMF 提供了优异的性能,允许进行特异性标记和提高光稳定性,使其成为扩展单分子成像技术的理想候选者。