Department of Physics & Astronomy and Center for Quantitative Biology, Piscataway, New Jersey 08854, USA.
Phys Rev Lett. 2018 Jul 20;121(3):038301. doi: 10.1103/PhysRevLett.121.038301.
We propose a novel Bayesian methodology which uses random walks for rapid inference of statistical properties of undirected networks with weighted or unweighted edges. Our formalism yields high-accuracy estimates of the probability distribution of any network node-based property, and of the network size, after only a small fraction of network nodes has been explored. The Bayesian nature of our approach provides rigorous estimates of all parameter uncertainties. We demonstrate our framework on several standard examples, including random, scale-free, and small-world networks, and apply it to study epidemic spreading on a scale-free network. We also infer properties of the large-scale network formed by hyperlinks between Wikipedia pages.
我们提出了一种新的贝叶斯方法,该方法使用随机游走快速推断具有加权或无向边的无向网络的统计特性。我们的形式主义方法仅在探索了一小部分网络节点后,就能对任何基于网络节点的属性的概率分布以及网络大小进行高精度估计。我们方法的贝叶斯性质为所有参数不确定性提供了严格的估计。我们在几个标准示例上演示了我们的框架,包括随机、无标度和小世界网络,并将其应用于无标度网络上的流行病传播研究。我们还推断了维基百科页面之间超链接形成的大规模网络的属性。