Zhang Xu, Yang Huanhuan, Cui Zhaojie
School of Environmental Science and Engineering , Shandong University , Ji'nan 250100 , China . Email:
School of Life Science , Shandong University , Ji'nan 250100 , China.
Toxicol Res (Camb). 2017 May 9;6(4):442-447. doi: 10.1039/c7tx00110j. eCollection 2017 Jul 1.
, selected from mine tailings for heavy metal bioremediation, was characterized at the genetic level by internal transcribed spacer (ITS) analysis. was first applied for the absorption of heavy metals {Fe(iii), Mn(ii), Cu(ii), Zn(ii), and Pb(ii)}. The minimal inhibitory concentration test showed that could tolerate relatively high concentrations of heavy metals. could uptake 79.5%, 44.1%, 62.5%, 56.5%, and 85.5% of Fe(iii), Mn(ii), Cu(ii), Zn(ii), and Pb(ii), respectively, from the initial concentration of 20 mg L under optimum conditions (pH 8; 30 °C). Monitoring the change in ATPase activity at certain intervals indicated that the mechanism of bioremediation was directly related to the energy consumption. will be widely used for remediation in special environment because of strong vitality and excellent bioremediation efficiency.
从尾矿中筛选出用于重金属生物修复的[具体名称未给出],通过内转录间隔区(ITS)分析在基因水平上进行了表征。[具体名称未给出]首先用于吸收重金属{铁(III)、锰(II)、铜(II)、锌(II)和铅(II)}。最低抑菌浓度试验表明[具体名称未给出]能够耐受相对较高浓度的重金属。在最佳条件(pH 8;30°C)下,[具体名称未给出]能够分别从初始浓度为20 mg/L的溶液中摄取79.5%、44.1%、62.5%、56.5%和85.5%的铁(III)、锰(II)、铜(II)、锌(II)和铅(II)。定期监测ATP酶活性的变化表明生物修复机制与能量消耗直接相关。由于[具体名称未给出]具有强大的生命力和出色的生物修复效率,它将在特殊环境的生物修复中得到广泛应用。