Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology.
Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224, and.
J Neurosci. 2018 Sep 19;38(38):8211-8232. doi: 10.1523/JNEUROSCI.1134-18.2018. Epub 2018 Aug 9.
α-Synuclein (αsyn) is the key protein that forms neuronal aggregates in the neurodegenerative disorders Parkinson's disease (PD) and dementia with Lewy bodies. Recent evidence points to the prion-like spread of αsyn from one brain region to another. Propagation of αsyn is likely dependent on release, uptake, and misfolding. Under normal circumstances, this highly expressed brain protein functions normally without promoting pathology, yet the underlying endogenous mechanisms that prevent αsyn spread are not understood. 14-3-3 proteins are highly expressed brain proteins that have chaperone function and regulate protein trafficking. In this study, we investigated the potential role of the 14-3-3 proteins in the regulation of αsyn spread using two models of αsyn spread. In a paracrine αsyn model, 14-3-3θ promoted release of αsyn complexed with 14-3-3θ. Despite higher amounts of released αsyn, extracellular αsyn showed reduced oligomerization and seeding capability, reduced internalization, and reduced toxicity in primary mixed-gender mouse neurons. 14-3-3 inhibition reduced the amount of αsyn released, yet released αsyn was more toxic and demonstrated increased oligomerization, seeding capability, and internalization. In the preformed fibril model, 14-3-3 θ reduced αsyn aggregation and neuronal death, whereas 14-3-3 inhibition enhanced αsyn aggregation and neuronal death in primary mouse neurons. 14-3-3s blocked αsyn spread to distal chamber neurons not exposed directly to fibrils in multichamber, microfluidic devices. These findings point to 14-3-3s as a direct regulator of αsyn propagation, and suggest that dysfunction of 14-3-3 function may promote αsyn pathology in PD and related synucleinopathies. Transfer of misfolded aggregates of α-synuclein from one brain region to another is implicated in the pathogenesis of Parkinson's disease and other synucleinopathies. This process is dependent on active release, internalization, and misfolding of α-synuclein. 14-3-3 proteins are highly expressed chaperone proteins that interact with α-synuclein and regulate protein trafficking. We used two different models in which toxicity is associated with cell-to-cell transfer of α-synuclein to test whether 14-3-3s impact α-synuclein toxicity. We demonstrate that 14-3-3θ reduces α-synuclein transfer and toxicity by inhibiting oligomerization, seeding capability, and internalization of α-synuclein, whereas 14-3-3 inhibition accelerates the transfer and toxicity of α-synuclein in these models. Dysfunction of 14-3-3 function may be a critical mechanism by which α-synuclein propagation occurs in disease.
α-突触核蛋白(αsyn)是形成神经退行性疾病帕金森病(PD)和路易体痴呆中神经元聚集的关键蛋白。最近的证据表明,αsyn 以类朊病毒的方式从一个脑区传播到另一个脑区。αsyn 的传播可能依赖于释放、摄取和错误折叠。在正常情况下,这种高度表达的脑蛋白在不促进病理学的情况下正常发挥功能,但阻止 αsyn 传播的潜在内源性机制尚不清楚。14-3-3 蛋白是高度表达的脑蛋白,具有伴侣功能并调节蛋白运输。在这项研究中,我们使用两种 αsyn 传播模型研究了 14-3-3 蛋白在调节 αsyn 传播中的潜在作用。在旁分泌 αsyn 模型中,14-3-3θ 促进与 14-3-3θ 结合的 αsyn 的释放。尽管释放的 αsyn 数量增加,但细胞外 αsyn 的寡聚化和种子形成能力降低,内化减少,对原代混合性别小鼠神经元的毒性降低。14-3-3 抑制减少了 αsyn 的释放量,但释放的 αsyn 毒性更大,表现出更高的寡聚化、种子形成能力和内化。在原纤维模型中,14-3-3θ 减少了 αsyn 聚集和神经元死亡,而 14-3-3 抑制增强了原代小鼠神经元中的 αsyn 聚集和神经元死亡。在多腔室、微流控装置中,14-3-3θ 阻止了 αsyn 向未直接暴露于原纤维的远端腔室神经元的传播。这些发现表明 14-3-3s 是 αsyn 传播的直接调节剂,并表明 14-3-3 功能的功能障碍可能会促进 PD 和相关突触核蛋白病中的 αsyn 病理学。从一个脑区到另一个脑区转移错误折叠的α-突触核蛋白与帕金森病和其他突触核蛋白病的发病机制有关。这个过程依赖于 α-突触核蛋白的主动释放、内化和错误折叠。14-3-3 蛋白是高度表达的伴侣蛋白,与 α-突触核蛋白相互作用并调节蛋白运输。我们使用了两种不同的模型,其中毒性与 α-突触核蛋白的细胞间转移有关,以测试 14-3-3s 是否影响 α-突触核蛋白的毒性。我们证明 14-3-3θ 通过抑制 α-突触核蛋白的寡聚化、种子形成能力和内化来减少 α-突触核蛋白的转移和毒性,而 14-3-3 抑制则会加速这些模型中 α-突触核蛋白的转移和毒性。14-3-3 功能的功能障碍可能是 α-突触核蛋白在疾病中传播的关键机制。