Suppr超能文献

一种稳健的统计方法分析接受肾脏替代治疗的危重症患者的群体药动学数据。

A Robust Statistical Approach to Analyse Population Pharmacokinetic Data in Critically Ill Patients Receiving Renal Replacement Therapy.

机构信息

Melbourne EpiCentre, University of Melbourne and Melbourne Health, Melbourne, VIC, Australia.

The Royal Melbourne Hospital, City Campus, 7 East, Main Building, Grattan Street, Parkville, VIC, 3050, Australia.

出版信息

Clin Pharmacokinet. 2019 Feb;58(2):263-270. doi: 10.1007/s40262-018-0690-1.

Abstract

BACKGROUND AND AIM

Current approaches to antibiotic dose determination in critically ill patients requiring renal replacement therapy are primarily based on the assessment of highly heterogeneous data from small number of patients. The standard modelling approaches limit the scope of constructing robust confidence boundaries of the distribution of pharmacokinetics (PK) parameters, especially when the evaluation of possible association of demographic and clinical factors at different levels of the distribution of drug clearance is of interest. Commonly used compartmental models generally construct the inferences through a linear or non-linear mean regression, which is inadequate when the distribution is skewed, multi-modal or effected by atypical observation. In this study, we discuss the statistical challenges in robust estimation of the confidence boundaries of the PK parameters in the presence of highly heterogenous patient characteristics.

METHODS

A novel stepwise approach to evaluate the confidence boundaries of PK parameters is proposed by combining PK modelling with mixed-effects quantile regression (MEQR) methods.

RESULTS

This method allows the assessment demographic and clinical factors' effects at any arbitrary quantiles of the outcome of interest, without restricting assumptions on the distributions. The MEQR approach allows us to investigate if the levels of association of the covariates are different at low, medium or high concentration.

CONCLUSIONS

This methodological assessment is deemed as a background initial approach to support the development of a class of statistical algorithm in constructing robust confidence intervals of PK parameters which can be used for developing an optimised antibiotic dosing guideline for critically ill patients requiring renal replacement therapy.

摘要

背景与目的

目前,需要肾脏替代治疗的重症患者的抗生素剂量确定方法主要基于对少数患者的高度异质数据的评估。标准建模方法限制了构建药代动力学(PK)参数分布置信边界的范围,特别是当评估药物清除率分布的不同水平上的人口统计学和临床因素的可能关联时。常用的房室模型通常通过线性或非线性均值回归进行推断,当分布偏斜、多峰或受到非典型观察影响时,这种方法是不充分的。在本研究中,我们讨论了在存在高度异质患者特征的情况下,对 PK 参数置信边界进行稳健估计的统计挑战。

方法

通过将 PK 建模与混合效应分位数回归(MEQR)方法相结合,提出了一种新的逐步方法来评估 PK 参数的置信边界。

结果

该方法允许评估人口统计学和临床因素对感兴趣的结果的任意分位数的影响,而无需对分布做出限制假设。MEQR 方法使我们能够研究协变量的关联水平是否在低、中或高浓度时有所不同。

结论

这种方法评估被认为是支持开发一类用于构建 PK 参数稳健置信区间的统计算法的背景初步方法,可用于为需要肾脏替代治疗的重症患者开发优化的抗生素剂量指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验