Suppr超能文献

混合模型的分位数回归及其在中国血压趋势研究中的应用

QUANTILE REGRESSION FOR MIXED MODELS WITH AN APPLICATION TO EXAMINE BLOOD PRESSURE TRENDS IN CHINA.

作者信息

Smith Luke B, Fuentes Montserrat, Gordon-Larsen Penny, Reich Brian J

机构信息

North Carolina State University and University of North Carolina at Chapel Hill.

出版信息

Ann Appl Stat. 2015 Sep;9(3):1226-1246. doi: 10.1214/15-AOAS841. Epub 2015 Nov 2.

Abstract

Cardiometabolic diseases have substantially increased in China in the past 20 years and blood pressure is a primary modifiable risk factor. Using data from the China Health and Nutrition Survey we examine blood pressure trends in China from 1991 to 2009, with a concentration on age cohorts and urbanicity. Very large values of blood pressure are of interest, so we model the conditional quantile functions of systolic and diastolic blood pressure. This allows the covariate effects in the middle of the distribution to vary from those in the upper tail, the focal point of our analysis. We join the distributions of systolic and diastolic blood pressure using a copula, which permits the relationships between the covariates and the two responses to share information and enables probabilistic statements about systolic and diastolic blood pressure jointly. Our copula maintains the marginal distributions of the group quantile effects while accounting for within-subject dependence, enabling inference at the population and subject levels. Our population level regression effects change across quantile level, year, and blood pressure type, providing a rich environment for inference. To our knowledge, this is the first quantile function model to explicitly model within-subject autocorrelation and is the first quantile function approach that simultaneously models multivariate conditional response. We find that the association between high blood pressure and living in an urban area has evolved from positive to negative, with the strongest changes occurring in the upper tail. The increase in urbanization over the last twenty years coupled with the transition from the positive association between urbanization and blood pressure in earlier years to a more uniform association with urbanization suggests increasing blood pressure over time throughout China, even in less urbanized areas. Our methods are available in the R package .

摘要

在过去20年中,中国的心血管代谢疾病大幅增加,血压是一个主要的可改变风险因素。利用中国健康与营养调查的数据,我们研究了1991年至2009年中国的血压趋势,重点关注年龄队列和城市化程度。非常高的血压值很值得关注,因此我们对收缩压和舒张压的条件分位数函数进行建模。这使得分布中间的协变量效应与上尾的协变量效应有所不同,而我们分析的重点就是上尾。我们使用一个Copula函数来连接收缩压和舒张压的分布,这允许协变量与两个响应之间的关系共享信息,并能够联合做出关于收缩压和舒张压的概率陈述。我们的Copula函数在考虑个体内相关性的同时,保持了组间分位数效应的边际分布,从而能够在总体和个体层面进行推断。我们的总体水平回归效应在分位数水平、年份和血压类型之间有所变化,为推断提供了丰富的环境。据我们所知,这是第一个明确对个体内自相关进行建模的分位数函数模型,也是第一个同时对多变量条件响应进行建模的分位数函数方法。我们发现,高血压与居住在城市地区之间的关联已从正相关演变为负相关,最强的变化发生在上尾。过去二十年城市化的增加,以及从早期城市化与血压的正相关到与城市化更统一的关联的转变,表明即使在城市化程度较低的地区,中国各地的血压也在随时间上升。我们的方法可在R包中获取。

相似文献

7
Bayesian quantile regression joint models: Inference and dynamic predictions.贝叶斯分位数回归联合模型:推断和动态预测。
Stat Methods Med Res. 2019 Aug;28(8):2524-2537. doi: 10.1177/0962280218784757. Epub 2018 Jul 2.
10
High-Dimensional Spatial Quantile Function-on-Scalar Regression.高维空间标量上分位数函数回归
J Am Stat Assoc. 2022;117(539):1563-1578. doi: 10.1080/01621459.2020.1870984. Epub 2021 Mar 7.

本文引用的文献

4
Bayesian quantile regression for censored data.用于删失数据的贝叶斯分位数回归
Biometrics. 2013 Sep;69(3):651-60. doi: 10.1111/biom.12053. Epub 2013 Jul 11.
8
Noncrossing quantile regression curve estimation.非交叉分位数回归曲线估计
Biometrika. 2010 Dec;97(4):825-838. doi: 10.1093/biomet/asq048. Epub 2010 Aug 30.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验