Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania.
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.
JACC Heart Fail. 2018 Sep;6(9):771-779. doi: 10.1016/j.jchf.2018.03.016. Epub 2018 Aug 8.
This study investigates the use of a Bayesian statistical models to predict survival at various time points in patients undergoing left ventricular assist device (LVAD) implantation.
LVADs are being increasingly used in patients with end-stage heart failure. Appropriate patient selection continues to be key in optimizing post-LVAD outcomes.
Data used for this study were derived from 10,277 adult patients from the INTERMACS (Inter-Agency Registry for Mechanically Assisted Circulatory Support) who had a primary LVAD implanted between January 2012 and December 2015. Risk for mortality was calculated retrospectively for various time points (1, 3, and 12 months) after LVAD implantation, using multiple pre-implantation variables. For each of these endpoints, a separate tree-augmented naïve Bayes model was constructed using the most predictive variables.
A set of 29, 26, and 31 pre-LVAD variables were found to be predictive at 1, 3, and 12 months, respectively. Predictors of 1-month mortality included low Inter-Agency Registry for Mechanically Assisted Circulatory Support profile, number of acute events in the 48 h before surgery, temporary mechanical circulatory support, and renal and hepatic dysfunction. Variables predicting 12-month mortality included advanced age, frailty, device strategy, and chronic renal disease. The accuracy of all Bayesian models was between 76% and 87%, with an area under the receiver operative characteristics curve of between 0.70 and 0.71.
A Bayesian prognostic model for predicting survival based on the comprehensive INTERMACS registry provided highly accurate predictions of mortality based on pre-operative variables. These models may facilitate clinical decision-making while screening candidates for LVAD therapy.
本研究采用贝叶斯统计模型,预测接受左心室辅助装置(LVAD)植入的患者在不同时间点的生存率。
LVAD 越来越多地用于终末期心力衰竭患者。适当的患者选择仍然是优化 LVAD 后结果的关键。
本研究的数据来自 INTERMACS(机械循环辅助机构注册中心)的 10277 名成年患者,这些患者在 2012 年 1 月至 2015 年 12 月期间首次植入 LVAD。使用多种植入前变量,回顾性计算 LVAD 植入后不同时间点(1、3 和 12 个月)的死亡率风险。对于每个终点,使用最具预测性的变量构建了一个单独的树增强朴素贝叶斯模型。
发现了一组 29、26 和 31 个术前变量,分别在 1、3 和 12 个月时具有预测性。1 个月死亡率的预测因子包括低 INTERMACS 机械循环辅助机构注册中心评分、手术前 48 小时内急性事件的数量、临时机械循环支持以及肾功能和肝功能障碍。预测 12 个月死亡率的变量包括年龄较大、虚弱、设备策略和慢性肾病。所有贝叶斯模型的准确性在 76%到 87%之间,接收器操作特征曲线下的面积在 0.70 到 0.71 之间。
基于综合 INTERMACS 注册中心的预测生存率的贝叶斯预后模型,基于术前变量提供了对死亡率的高度准确预测。这些模型可能有助于在筛选 LVAD 治疗候选者时进行临床决策。