Suppr超能文献

一种用于预测左心室辅助装置植入后生存率的贝叶斯模型。

A Bayesian Model to Predict Survival After Left Ventricular Assist Device Implantation.

机构信息

Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania.

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.

出版信息

JACC Heart Fail. 2018 Sep;6(9):771-779. doi: 10.1016/j.jchf.2018.03.016. Epub 2018 Aug 8.

Abstract

OBJECTIVES

This study investigates the use of a Bayesian statistical models to predict survival at various time points in patients undergoing left ventricular assist device (LVAD) implantation.

BACKGROUND

LVADs are being increasingly used in patients with end-stage heart failure. Appropriate patient selection continues to be key in optimizing post-LVAD outcomes.

METHODS

Data used for this study were derived from 10,277 adult patients from the INTERMACS (Inter-Agency Registry for Mechanically Assisted Circulatory Support) who had a primary LVAD implanted between January 2012 and December 2015. Risk for mortality was calculated retrospectively for various time points (1, 3, and 12 months) after LVAD implantation, using multiple pre-implantation variables. For each of these endpoints, a separate tree-augmented naïve Bayes model was constructed using the most predictive variables.

RESULTS

A set of 29, 26, and 31 pre-LVAD variables were found to be predictive at 1, 3, and 12 months, respectively. Predictors of 1-month mortality included low Inter-Agency Registry for Mechanically Assisted Circulatory Support profile, number of acute events in the 48 h before surgery, temporary mechanical circulatory support, and renal and hepatic dysfunction. Variables predicting 12-month mortality included advanced age, frailty, device strategy, and chronic renal disease. The accuracy of all Bayesian models was between 76% and 87%, with an area under the receiver operative characteristics curve of between 0.70 and 0.71.

CONCLUSIONS

A Bayesian prognostic model for predicting survival based on the comprehensive INTERMACS registry provided highly accurate predictions of mortality based on pre-operative variables. These models may facilitate clinical decision-making while screening candidates for LVAD therapy.

摘要

目的

本研究采用贝叶斯统计模型,预测接受左心室辅助装置(LVAD)植入的患者在不同时间点的生存率。

背景

LVAD 越来越多地用于终末期心力衰竭患者。适当的患者选择仍然是优化 LVAD 后结果的关键。

方法

本研究的数据来自 INTERMACS(机械循环辅助机构注册中心)的 10277 名成年患者,这些患者在 2012 年 1 月至 2015 年 12 月期间首次植入 LVAD。使用多种植入前变量,回顾性计算 LVAD 植入后不同时间点(1、3 和 12 个月)的死亡率风险。对于每个终点,使用最具预测性的变量构建了一个单独的树增强朴素贝叶斯模型。

结果

发现了一组 29、26 和 31 个术前变量,分别在 1、3 和 12 个月时具有预测性。1 个月死亡率的预测因子包括低 INTERMACS 机械循环辅助机构注册中心评分、手术前 48 小时内急性事件的数量、临时机械循环支持以及肾功能和肝功能障碍。预测 12 个月死亡率的变量包括年龄较大、虚弱、设备策略和慢性肾病。所有贝叶斯模型的准确性在 76%到 87%之间,接收器操作特征曲线下的面积在 0.70 到 0.71 之间。

结论

基于综合 INTERMACS 注册中心的预测生存率的贝叶斯预后模型,基于术前变量提供了对死亡率的高度准确预测。这些模型可能有助于在筛选 LVAD 治疗候选者时进行临床决策。

相似文献

引用本文的文献

5
How to select a patient for LVAD.如何选择左心室辅助装置(LVAD)的患者。
Indian J Thorac Cardiovasc Surg. 2023 Jul;39(Suppl 1):8-17. doi: 10.1007/s12055-022-01428-w. Epub 2022 Dec 15.
10
Mechanical support for the failing single ventricle after Fontan.Fontan术后对衰竭单心室的机械支持。
JTCVS Tech. 2022 Feb 15;13:174-181. doi: 10.1016/j.xjtc.2021.12.019. eCollection 2022 Jun.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验