Department of Mathematics, Nanchang University, Nanchang 330031, Jiangxi, China.
School of Electrical and Electronic Engineering, The University of Adelaide, SA 5005, Australia.
Neural Netw. 2018 Oct;106:281-293. doi: 10.1016/j.neunet.2018.07.009. Epub 2018 Aug 1.
This paper considers the problem of the asymptotic synchronization in mean square for stochastic reaction-diffusion complex dynamical networks with infinite delay driven by the Wiener processes in the infinite dimensional space under the pinning impulsive control. Two types of the impulsive controllers are proposed: the first is a single pinning impulsive controller on the first node, and the second is the pinning impulsive controller on a small portion of the network nodes. By using the variation-of-constant formula and the fixed point theorem, the asymptotic behavior of impulsive differential equations with infinite delay is first analyzed. Then, by introducing some operators in the abstract space, the networks are transformed into a set of stochastic coupled impulsive partial differential equations in Hilbert space. Under these two pinning impulsive control types, the asymptotic stability in mean square of stochastic coupled partial differential equations is examined by Lyapunov function approach and the comparison principle. The asymptotic synchronization in mean square of stochastic reaction-diffusion dynamical networks can be realized for these two pinning impulsive control schemes. One example is provided to present the potential application of the theoretic results obtained.
本文考虑了在无穷维空间中由 Wiener 过程驱动的具有无限时滞的随机反应扩散复动力网络在钉扎脉冲控制下的均方渐近同步问题。提出了两种类型的脉冲控制器:第一种是第一个节点上的单个钉扎脉冲控制器,第二种是网络节点的一小部分上的钉扎脉冲控制器。通过使用常数变易公式和不动点定理,首先分析了具有无穷时滞的脉冲微分方程的渐近行为。然后,通过在抽象空间中引入一些算子,将网络转化为一组 Hilbert 空间中的随机耦合脉冲偏微分方程。在这两种钉扎脉冲控制类型下,通过 Lyapunov 函数方法和比较原理来检验随机耦合偏微分方程的均方渐近稳定性。这两种钉扎脉冲控制方案可以实现随机反应扩散动力网络的均方渐近同步。提供了一个例子来说明所得到的理论结果的潜在应用。