Suppr超能文献

活体内证据表明枯草芽孢杆菌 SMC 凝聚素复合物通过 ATP 酶依赖性 DNA 易位。

In Vivo Evidence for ATPase-Dependent DNA Translocation by the Bacillus subtilis SMC Condensin Complex.

机构信息

Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.

Department of Biology, Indiana University, Bloomington, IN 47405, USA.

出版信息

Mol Cell. 2018 Sep 6;71(5):841-847.e5. doi: 10.1016/j.molcel.2018.07.006. Epub 2018 Aug 9.

Abstract

Structural maintenance of chromosomes (SMC) complexes shape the genomes of virtually all organisms, but how they function remains incompletely understood. Recent studies in bacteria and eukaryotes have led to a unifying model in which these ring-shaped ATPases act along contiguous DNA segments, processively enlarging DNA loops. In support of this model, single-molecule imaging experiments indicate that Saccharomyces cerevisiae condensin complexes can extrude DNA loops in an ATP-hydrolysis-dependent manner in vitro. Here, using time-resolved high-throughput chromosome conformation capture (Hi-C), we investigate the interplay between ATPase activity of the Bacillus subtilis SMC complex and loop formation in vivo. We show that point mutants in the SMC nucleotide-binding domain that impair but do not eliminate ATPase activity not only exhibit delays in de novo loop formation but also have reduced rates of processive loop enlargement. These data provide in vivo evidence that SMC complexes function as loop extruders.

摘要

染色体结构维持 (SMC) 复合物几乎为所有生物体的基因组提供了形状,但它们的功能仍不完全清楚。细菌和真核生物的最近研究提出了一个统一的模型,即这些环形 ATP 酶沿着连续的 DNA 片段作用,连续地扩大 DNA 环。为了支持这个模型,单分子成像实验表明酿酒酵母凝聚素复合物可以在体外以依赖于 ATP 水解的方式挤出 DNA 环。在这里,我们使用时间分辨高通量染色体构象捕获 (Hi-C) 技术,研究了枯草芽孢杆菌 SMC 复合物的 ATP 酶活性与体内环形成之间的相互作用。我们表明,在 SMC 核苷酸结合结构域中的点突变体虽然削弱但没有消除 ATP 酶活性,不仅表现出从头形成环的延迟,而且也表现出连续环扩大的速率降低。这些数据提供了 SMC 复合物作为环挤出物的体内证据。

相似文献

1
In Vivo Evidence for ATPase-Dependent DNA Translocation by the Bacillus subtilis SMC Condensin Complex.
Mol Cell. 2018 Sep 6;71(5):841-847.e5. doi: 10.1016/j.molcel.2018.07.006. Epub 2018 Aug 9.
2
Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic Condensin.
Mol Cell. 2017 Mar 2;65(5):861-872.e9. doi: 10.1016/j.molcel.2017.01.026. Epub 2017 Feb 23.
3
Transient DNA Occupancy of the SMC Interarm Space in Prokaryotic Condensin.
Mol Cell. 2019 Jul 25;75(2):209-223.e6. doi: 10.1016/j.molcel.2019.05.001. Epub 2019 Jun 11.
4
Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus.
Science. 2017 Feb 3;355(6324):524-527. doi: 10.1126/science.aai8982.
5
Real-time imaging of DNA loop extrusion by condensin.
Science. 2018 Apr 6;360(6384):102-105. doi: 10.1126/science.aar7831. Epub 2018 Feb 22.
6
Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis.
Genes Dev. 2015 Aug 1;29(15):1661-75. doi: 10.1101/gad.265876.115.
7
RNA polymerases as moving barriers to condensin loop extrusion.
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20489-20499. doi: 10.1073/pnas.1907009116. Epub 2019 Sep 23.
9
Structural Basis of an Asymmetric Condensin ATPase Cycle.
Mol Cell. 2019 Jun 20;74(6):1175-1188.e9. doi: 10.1016/j.molcel.2019.03.037.
10
Chromosome organization by one-sided and two-sided loop extrusion.
Elife. 2020 Apr 6;9:e53558. doi: 10.7554/eLife.53558.

引用本文的文献

1
Probing the effect of PEG-DNA interactions and buffer viscosity on tethered DNA in shear flow.
PLoS One. 2025 Aug 25;20(8):e0329961. doi: 10.1371/journal.pone.0329961. eCollection 2025.
2
Extrusion fountains are restricted by WAPL-dependent cohesin release and CTCF barriers.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf549.
3
Cohesin organizes 3D DNA contacts surrounding active enhancers in .
Genome Res. 2025 May 2;35(5):1108-1123. doi: 10.1101/gr.279365.124.
4
Mechanism of DNA capture by the MukBEF SMC complex and its inhibition by a viral DNA mimic.
Cell. 2025 May 1;188(9):2465-2479.e14. doi: 10.1016/j.cell.2025.02.032. Epub 2025 Mar 31.
5
SMC translocation is unaffected by an excess of nucleoid associated proteins in vivo.
Sci Rep. 2025 Jan 19;15(1):2447. doi: 10.1038/s41598-025-86946-4.
6
The chromosome folding problem and how cells solve it.
Cell. 2024 Nov 14;187(23):6424-6450. doi: 10.1016/j.cell.2024.10.026.
7
Cohesin ring gates are specialized for meiotic cell division.
J Mol Cell Biol. 2025 May 2;16(10). doi: 10.1093/jmcb/mjae047.
8
Cohesin organizes 3D DNA contacts surrounding active enhancers in .
bioRxiv. 2024 Sep 25:2023.09.18.558239. doi: 10.1101/2023.09.18.558239.
9
Fob1-dependent condensin recruitment and loop extrusion on yeast chromosome III.
PLoS Genet. 2023 Apr 14;19(4):e1010705. doi: 10.1371/journal.pgen.1010705. eCollection 2023 Apr.
10
High-Resolution 3D Genome Map of Brucella Chromosomes in Exponential and Stationary Phases.
Microbiol Spectr. 2023 Feb 27;11(2):e0429022. doi: 10.1128/spectrum.04290-22.

本文引用的文献

1
DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes.
Nucleic Acids Res. 2019 Jul 26;47(13):6956-6972. doi: 10.1093/nar/gkz497.
2
The Energetics and Physiological Impact of Cohesin Extrusion.
Cell. 2018 Sep 20;175(1):292-294. doi: 10.1016/j.cell.2018.09.002.
3
Real-time imaging of DNA loop extrusion by condensin.
Science. 2018 Apr 6;360(6384):102-105. doi: 10.1126/science.aar7831. Epub 2018 Feb 22.
4
RotoStep: A Chromosome Dynamics Simulator Reveals Mechanisms of Loop Extrusion.
Cold Spring Harb Symp Quant Biol. 2017;82:101-109. doi: 10.1101/sqb.2017.82.033696. Epub 2017 Nov 22.
5
Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism.
EMBO J. 2017 Dec 1;36(23):3448-3457. doi: 10.15252/embj.201797596. Epub 2017 Nov 8.
6
Oligomerization and ATP stimulate condensin-mediated DNA compaction.
Sci Rep. 2017 Oct 27;7(1):14279. doi: 10.1038/s41598-017-14701-5.
7
Structural Basis for a Safety-Belt Mechanism That Anchors Condensin to Chromosomes.
Cell. 2017 Oct 19;171(3):588-600.e24. doi: 10.1016/j.cell.2017.09.008. Epub 2017 Oct 5.
8
The condensin complex is a mechanochemical motor that translocates along DNA.
Science. 2017 Nov 3;358(6363):672-676. doi: 10.1126/science.aan6516. Epub 2017 Sep 7.
10
Structure of Full-Length SMC and Rearrangements Required for Chromosome Organization.
Mol Cell. 2017 Jul 20;67(2):334-347.e5. doi: 10.1016/j.molcel.2017.06.010. Epub 2017 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验