Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
Department of Biology, Indiana University, Bloomington, IN 47405, USA.
Mol Cell. 2018 Sep 6;71(5):841-847.e5. doi: 10.1016/j.molcel.2018.07.006. Epub 2018 Aug 9.
Structural maintenance of chromosomes (SMC) complexes shape the genomes of virtually all organisms, but how they function remains incompletely understood. Recent studies in bacteria and eukaryotes have led to a unifying model in which these ring-shaped ATPases act along contiguous DNA segments, processively enlarging DNA loops. In support of this model, single-molecule imaging experiments indicate that Saccharomyces cerevisiae condensin complexes can extrude DNA loops in an ATP-hydrolysis-dependent manner in vitro. Here, using time-resolved high-throughput chromosome conformation capture (Hi-C), we investigate the interplay between ATPase activity of the Bacillus subtilis SMC complex and loop formation in vivo. We show that point mutants in the SMC nucleotide-binding domain that impair but do not eliminate ATPase activity not only exhibit delays in de novo loop formation but also have reduced rates of processive loop enlargement. These data provide in vivo evidence that SMC complexes function as loop extruders.
染色体结构维持 (SMC) 复合物几乎为所有生物体的基因组提供了形状,但它们的功能仍不完全清楚。细菌和真核生物的最近研究提出了一个统一的模型,即这些环形 ATP 酶沿着连续的 DNA 片段作用,连续地扩大 DNA 环。为了支持这个模型,单分子成像实验表明酿酒酵母凝聚素复合物可以在体外以依赖于 ATP 水解的方式挤出 DNA 环。在这里,我们使用时间分辨高通量染色体构象捕获 (Hi-C) 技术,研究了枯草芽孢杆菌 SMC 复合物的 ATP 酶活性与体内环形成之间的相互作用。我们表明,在 SMC 核苷酸结合结构域中的点突变体虽然削弱但没有消除 ATP 酶活性,不仅表现出从头形成环的延迟,而且也表现出连续环扩大的速率降低。这些数据提供了 SMC 复合物作为环挤出物的体内证据。