Suppr超能文献

凝缩蛋白介导的DNA环挤压的实时成像

Real-time imaging of DNA loop extrusion by condensin.

作者信息

Ganji Mahipal, Shaltiel Indra A, Bisht Shveta, Kim Eugene, Kalichava Ana, Haering Christian H, Dekker Cees

机构信息

Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands.

Cell Biology and Biophysics Unit, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

出版信息

Science. 2018 Apr 6;360(6384):102-105. doi: 10.1126/science.aar7831. Epub 2018 Feb 22.

Abstract

It has been hypothesized that SMC protein complexes such as condensin and cohesin spatially organize chromosomes by extruding DNA into large loops. We directly visualized the formation and processive extension of DNA loops by yeast condensin in real time. Our findings constitute unambiguous evidence for loop extrusion. We observed that a single condensin complex is able to extrude tens of kilobase pairs of DNA at a force-dependent speed of up to 1500 base pairs per second, using the energy of adenosine triphosphate hydrolysis. Condensin-induced loop extrusion was strictly asymmetric, which demonstrates that condensin anchors onto DNA and reels it in from only one side. Active DNA loop extrusion by SMC complexes may provide the universal unifying principle for genome organization.

摘要

据推测,凝缩素和黏连蛋白等SMC蛋白复合物通过将DNA挤压成大环在空间上组织染色体。我们实时直接观察到了酵母凝缩素形成DNA环以及DNA环持续延伸的过程。我们的发现为环挤压提供了明确的证据。我们观察到,单个凝缩素复合物能够利用三磷酸腺苷水解产生的能量,以高达每秒1500个碱基对的力依赖速度挤压出数十千碱基对的DNA。凝缩素诱导的环挤压是严格不对称的,这表明凝缩素锚定在DNA上并仅从一侧卷入DNA。SMC复合物介导的活性DNA环挤压可能为基因组组织提供普遍统一的原理。

相似文献

1
Real-time imaging of DNA loop extrusion by condensin.
Science. 2018 Apr 6;360(6384):102-105. doi: 10.1126/science.aar7831. Epub 2018 Feb 22.
2
Condensin complexes: understanding loop extrusion one conformational change at a time.
Biochem Soc Trans. 2020 Oct 30;48(5):2089-2100. doi: 10.1042/BST20200241.
3
Motor domain of condensin and step formation in extruding loop of DNA.
J Biol Phys. 2024 Dec;50(3-4):307-325. doi: 10.1007/s10867-024-09661-7. Epub 2024 Jul 30.
4
Structural Basis of an Asymmetric Condensin ATPase Cycle.
Mol Cell. 2019 Jun 20;74(6):1175-1188.e9. doi: 10.1016/j.molcel.2019.03.037.
5
DNA-loop extruding condensin complexes can traverse one another.
Nature. 2020 Mar;579(7799):438-442. doi: 10.1038/s41586-020-2067-5. Epub 2020 Mar 4.
6
A hold-and-feed mechanism drives directional DNA loop extrusion by condensin.
Science. 2022 Jun 3;376(6597):1087-1094. doi: 10.1126/science.abm4012. Epub 2022 Jun 2.
7
Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA.
Mol Cell. 2020 Jul 2;79(1):99-114.e9. doi: 10.1016/j.molcel.2020.04.026. Epub 2020 May 22.
8
In Vivo Evidence for ATPase-Dependent DNA Translocation by the Bacillus subtilis SMC Condensin Complex.
Mol Cell. 2018 Sep 6;71(5):841-847.e5. doi: 10.1016/j.molcel.2018.07.006. Epub 2018 Aug 9.
9
The Smc5/6 complex is a DNA loop-extruding motor.
Nature. 2023 Apr;616(7958):843-848. doi: 10.1038/s41586-023-05963-3. Epub 2023 Apr 19.
10
Genome folding through loop extrusion by SMC complexes.
Nat Rev Mol Cell Biol. 2021 Jul;22(7):445-464. doi: 10.1038/s41580-021-00349-7. Epub 2021 Mar 25.

引用本文的文献

1
Probing the effect of PEG-DNA interactions and buffer viscosity on tethered DNA in shear flow.
PLoS One. 2025 Aug 25;20(8):e0329961. doi: 10.1371/journal.pone.0329961. eCollection 2025.
2
The emerging sequence grammar of 3D genome organisation.
Hum Genet. 2025 Aug 25. doi: 10.1007/s00439-025-02772-8.
3
Heterogeneity as a feature: unraveling chromatin's role in nuclear mechanics.
Nucleus. 2025 Dec;16(1):2545037. doi: 10.1080/19491034.2025.2545037. Epub 2025 Aug 21.
5
Functional interplay between condensin I and topoisomerase Iiα in single-molecule DNA compaction.
Nat Commun. 2025 Aug 6;16(1):7239. doi: 10.1038/s41467-025-62600-5.
6
Replisomes restrict SMC translocation in vivo.
Nat Commun. 2025 Aug 4;16(1):7151. doi: 10.1038/s41467-025-62596-y.
7
Static three-dimensional structures determine fast dynamics between distal loci pairs in interphase chromosomes.
Sci Adv. 2025 Aug;11(31):eadx1763. doi: 10.1126/sciadv.adx1763. Epub 2025 Aug 1.
9
Condensin Accelerates Long-Range Intra-Chromosomal Interactions.
bioRxiv. 2025 May 3:2025.05.02.651983. doi: 10.1101/2025.05.02.651983.
10
The mitotic chromosome periphery modulates chromosome mechanics.
Nat Commun. 2025 Jul 10;16(1):6399. doi: 10.1038/s41467-025-61755-5.

本文引用的文献

1
DNA sequence encodes the position of DNA supercoils.
Elife. 2018 Dec 7;7:e36557. doi: 10.7554/eLife.36557.
2
A pathway for mitotic chromosome formation.
Science. 2018 Feb 9;359(6376). doi: 10.1126/science.aao6135. Epub 2018 Jan 18.
3
Catching DNA with hoops-biophysical approaches to clarify the mechanism of SMC proteins.
Nat Struct Mol Biol. 2017 Dec 7;24(12):1012-1020. doi: 10.1038/nsmb.3507.
4
RotoStep: A Chromosome Dynamics Simulator Reveals Mechanisms of Loop Extrusion.
Cold Spring Harb Symp Quant Biol. 2017;82:101-109. doi: 10.1101/sqb.2017.82.033696. Epub 2017 Nov 22.
5
Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism.
EMBO J. 2017 Dec 1;36(23):3448-3457. doi: 10.15252/embj.201797596. Epub 2017 Nov 8.
6
How are DNAs woven into chromosomes?
Science. 2017 Nov 3;358(6363):589-590. doi: 10.1126/science.aap8729.
7
Structural Basis for a Safety-Belt Mechanism That Anchors Condensin to Chromosomes.
Cell. 2017 Oct 19;171(3):588-600.e24. doi: 10.1016/j.cell.2017.09.008. Epub 2017 Oct 5.
8
The condensin complex is a mechanochemical motor that translocates along DNA.
Science. 2017 Nov 3;358(6363):672-676. doi: 10.1126/science.aan6516. Epub 2017 Sep 7.
9
Structure of Full-Length SMC and Rearrangements Required for Chromosome Organization.
Mol Cell. 2017 Jul 20;67(2):334-347.e5. doi: 10.1016/j.molcel.2017.06.010. Epub 2017 Jul 6.
10
Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus.
Science. 2017 Feb 3;355(6324):524-527. doi: 10.1126/science.aai8982.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验