Lambert Hugues, Kerry Timothy, Sharrad Clint A
1School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL UK.
Present Address: Lhoist Recherche et Développement, Business Innovation Cente, 31, rue de l'Industrie, 1400 Nivelles, Belgium.
J Radioanal Nucl Chem. 2018;317(2):925-932. doi: 10.1007/s10967-018-5953-7. Epub 2018 Jun 28.
The most advanced methodology for the pyroprocessing of spent nuclear fuel is the electrorefining of uranium metal in LiCl-KCl eutectic, in which uranium is solubilized as U(III). The production of U(III) in LiCl-KCl eutectic by the chlorination of uranium metal using BiCl has been performed for research purposes. In this work, this reaction was studied in-situ by visual observation, electronic absorption spectroscopy and electrochemistry at 450 °C. The most likely mechanism has been determined to involve the initial direct oxidation of uranium metal by Bi(III) to U(IV). The dissolved U(IV) then reacts with unreacted uranium metal to form U(III).
用于乏核燃料高温处理的最先进方法是在LiCl-KCl共晶体系中对金属铀进行电精炼,其中铀以U(III)的形式溶解。为了研究目的,已经通过使用BiCl对金属铀进行氯化反应,在LiCl-KCl共晶体系中制备了U(III)。在这项工作中,通过目视观察、电子吸收光谱和电化学方法在450°C下对该反应进行了原位研究。已确定最可能的反应机理涉及Bi(III)将金属铀直接初始氧化为U(IV)。溶解的U(IV)然后与未反应的金属铀反应形成U(III)。