Suppr超能文献

利用亲缘关系、复杂相关性和表型信息对基因组数据进行推理攻击。

An Inference Attack on Genomic Data Using Kinship, Complex Correlations, and Phenotype Information.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2018 Jul-Aug;15(4):1333-1343. doi: 10.1109/TCBB.2017.2709740.

Abstract

Individuals (and their family members) share (partial) genomic data on public platforms. However, using special characteristics of genomic data, background knowledge that can be obtained from the Web, and family relationship between the individuals, it is possible to infer the hidden parts of shared (and unshared) genomes. Existing work in this field considers simple correlations in the genome (as well as Mendel's law and partial genomes of a victim and his family members). In this paper, we improve the existing work on inference attacks on genomic privacy. We mainly consider complex correlations in the genome by using an observable Markov model and recombination model between the haplotypes. We also utilize the phenotype information about the victims. We propose an efficient message passing algorithm to consider all aforementioned background information for the inference. We show that the proposed framework improves inference with significantly less information compared to existing work.

摘要

个人(及其家庭成员)在公共平台上共享(部分)基因组数据。然而,利用基因组数据的特殊特征、可以从网络上获得的背景知识以及个体之间的亲属关系,可以推断出共享(和未共享)基因组的隐藏部分。该领域的现有工作考虑了基因组中的简单相关性(以及孟德尔定律和受害者及其家庭成员的部分基因组)。在本文中,我们改进了现有关于基因组隐私推断攻击的工作。我们主要通过使用观察到的马尔可夫模型和单倍型之间的重组模型来考虑基因组中的复杂相关性。我们还利用了有关受害者的表型信息。我们提出了一种有效的消息传递算法,以考虑推断所涉及的所有上述背景信息。我们表明,与现有工作相比,所提出的框架可以用更少的信息进行更好的推断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验