Suppr超能文献

分析 RNA 近邻参数揭示了相互关系,并量化了 RNA 二级结构预测中的不确定性。

Analysis of RNA nearest neighbor parameters reveals interdependencies and quantifies the uncertainty in RNA secondary structure prediction.

机构信息

Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York 14642, USA.

Computational Sciences, Moderna Therapeutics, Cambridge, Massachusetts 02141, USA.

出版信息

RNA. 2018 Nov;24(11):1568-1582. doi: 10.1261/rna.065102.117. Epub 2018 Aug 13.

Abstract

RNA secondary structure prediction is often used to develop hypotheses about structure-function relationships for newly discovered RNA sequences, to identify unknown functional RNAs, and to design sequences. Secondary structure prediction methods typically use a thermodynamic model that estimates the free energy change of possible structures based on a set of nearest neighbor parameters. These parameters were derived from optical melting experiments of small model oligonucleotides. This work aims to better understand the precision of structure prediction. Here, the experimental errors in optical melting experiments were propagated to errors in the derived nearest neighbor parameter values and then to errors in RNA secondary structure prediction. To perform this analysis, the optical melting experimental values were systematically perturbed within the estimates of experimental error and alternative sets of nearest neighbor parameters were then derived from these error-bounded values. Secondary structure predictions using either the perturbed or reference parameter sets were then compared. This work demonstrated that the precision of RNA secondary structure prediction is more robust than suggested by previous work based on perturbation of the nearest neighbor parameters. This robustness is due to correlations between parameters. Additionally, this work identified weaknesses in the parameter derivation that makes accurate assessment of parameter uncertainty difficult. Considerations for experimental design are provided to mitigate these weaknesses are provided.

摘要

RNA 二级结构预测常用于提出新发现的 RNA 序列的结构-功能关系假说,识别未知功能的 RNA,并设计序列。二级结构预测方法通常使用热力学模型,该模型根据一组最近邻参数估计可能结构的自由能变化。这些参数是从小型模型寡核苷酸的光学熔解实验中推导出来的。这项工作旨在更好地了解结构预测的精度。在这里,将光学熔解实验中的实验误差传播到推导的最近邻参数值的误差中,然后传播到 RNA 二级结构预测的误差中。为了进行此分析,在实验误差估计范围内系统地扰动了光学熔解实验值,然后从这些有界误差值中推导出替代的最近邻参数集。然后比较使用扰动或参考参数集进行的二级结构预测。这项工作表明,RNA 二级结构预测的精度比以前基于最近邻参数扰动的工作所建议的要稳健。这种稳健性是由于参数之间的相关性。此外,这项工作还发现了参数推导中的弱点,这使得准确评估参数不确定性变得困难。提供了考虑实验设计的注意事项以减轻这些弱点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f89/6191722/e58c22f3ab2e/1568f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验