Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.
Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan.
Sensors (Basel). 2018 Aug 13;18(8):2656. doi: 10.3390/s18082656.
Harmful algal blooms (HABs) occur frequently in the Seto Inland Sea, bringing significant economic and environmental losses for the area, which is well known as one of the world's most productive fisheries. Our objective was to develop a quantitative model using in situ hyperspectral measurements in the Seto Inland Sea to estimate chlorophyll (Chl-) concentration, which is a significant parameter for detecting HABs. We obtained spectra and Chl- data at six stations from 12 ship-based surveys between December 2015 and September 2017. In this study, we used an iterative stepwise elimination partial least squares (ISE-PLS) regression method along with several empirical and semi-analytical methods such as ocean chlorophyll, three-band model, and two-band model algorithms to retrieve Chl-. Our results showed that ISE-PLS using both the water-leaving reflectance () and the first derivative reflectance (FDR) had a better predictive ability with higher coefficient of determination (²), lower root mean squared error (RMSE), and higher residual predictive deviation (RPD) values (² = 0.77, RMSE = 1.47 and RPD = 2.1 for ; ² = 0.78, RMSE = 1.45 and RPD = 2.13 for FDR). However, in this study the ocean chlorophyll (OC) algorithms had poor predictive ability and the three-band and two-band model algorithms did not perform well in areas with lower Chl- concentrations. These results support ISE-PLS as a potential coastal water quality assessment method using hyperspectral measurements.
有害赤潮(HABs)在濑户内海频繁发生,给该地区带来了巨大的经济和环境损失,该地区是世界上最具生产力的渔业区之一。我们的目标是利用濑户内海的现场高光谱测量数据开发一个定量模型,以估算叶绿素(Chl-)浓度,这是检测 HABs 的重要参数。我们在 2015 年 12 月至 2017 年 9 月期间进行了 12 次船舶调查,在 6 个站位获得了光谱和 Chl-数据。在这项研究中,我们使用了迭代逐步消除偏最小二乘(ISE-PLS)回归方法,以及一些经验和半分析方法,如海洋叶绿素、三波段模型和双波段模型算法,以检索 Chl-。我们的结果表明,使用水体反射率()和一阶导数反射率(FDR)的 ISE-PLS 具有更好的预测能力,具有更高的决定系数(²)、更低的均方根误差(RMSE)和更高的残差预测偏差(RPD)值(²=0.77,RMSE=1.47 和 RPD=2.1 用于;²=0.78,RMSE=1.45 和 RPD=2.13 用于 FDR)。然而,在这项研究中,海洋叶绿素(OC)算法的预测能力较差,三波段和双波段模型算法在 Chl-浓度较低的区域表现不佳。这些结果支持 ISE-PLS 作为一种利用高光谱测量进行沿海水质评估的潜在方法。