Suppr超能文献

利用高光谱指数和特征波段改进土壤有机质含量估计的多元建模。

Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands.

机构信息

School of Geomatics, Anhui University of Science and Technology, Huainan, Anhui, 232001, China.

Key Laboratory of Aviation-Aerospace-Ground Cooperative Monitoring and Early Warning of Coal Mining-induced Disasters of Anhui Higher Education Institutes, Huainan, Anhui, 232001, China.

出版信息

PLoS One. 2023 Jun 14;18(6):e0286825. doi: 10.1371/journal.pone.0286825. eCollection 2023.

Abstract

Soil organic matter (SOM) is a key index of soil fertility. Calculating spectral index and screening characteristic band reduce redundancy information of hyperspectral data, and improve the accuracy of SOM prediction. This study aimed to compare the improvement of model accuracy by spectral index and characteristic band. This study collected 178 samples of topsoil (0-20 cm) in the central plain of Jiangsu, East China. Firstly, visible and near-infrared (VNIR, 350-2500 nm) reflectance spectra were measured using ASD FieldSpec 4 Std-Res spectral radiometer in the laboratory, and inverse-log reflectance (LR), continuum removal (CR), first-order derivative reflectance (FDR) were applied to transform the original reflectance (R). Secondly, optimal spectral indexes (including deviation of arch, difference index, ratio index, and normalized difference index) were calculated from each type of VNIR spectra. Characteristic bands were selected from each type of spectra by the competitive adaptive reweighted sampling (CARS) algorithm, respectively. Thirdly, SOM prediction models were established based on random forest (RF), support vector regression (SVR), deep neural networks (DNN) and partial least squares regression (PLSR) methods using optimal spectral indexes, denoted here as SI-based models. Meanwhile, SOM prediction models were established using characteristic wavelengths, denoted here as CARS-based models. Finally, this research compared and assessed accuracy of SI-based models and CARS-based models, and selected optimal model. Results showed: (1) The correlation between optimal spectral indexes and SOM was enhanced, with absolute value of correlation coefficient between 0.66 and 0.83. The SI-based models predicted SOM content accurately, with the coefficient of determination (R2) and root mean square error (RMSE) values ranging from 0.80 to 0.87, 2.40 g/kg to 2.88 g/kg in validation sets, and relative percent deviation (RPD) value between 2.14 and 2.52. (2) The accuracy of CARS-based models differed with models and spectral transformations. For all spectral transformations, PLSR and SVR combined with CARS displayed the best prediction (R2 and RMSE values ranged from 0.87 to 0.92, 1.91 g/kg to 2.56 g/kg in validation sets, and RPD value ranged from 2.41 to 3.23). For FDR and CR spectra, DNN and RF models achieved more accuracy (R2 and RMSE values ranged from 0.69 to 0.91, 1.90 g/kg to 3.57 g/kg in validation sets, and RPD value ranged from 1.73 to 3.25) than LR and R spectra (R2 and RMSE values from 0.20 to 0.35, 5.08 g/kg to 6.44 g/kg in validation sets, and RPD value ranged from 0.96 to 1.21). (3) Overall, the accuracy of SI-based models was slightly lower than that of CARS-based models. But spectral index had a good adaptability to the models, and each SI-based model displayed the similar accuracy. For different spectra, the accuracy of CARS-based model differed from modeling methods. (4) The optimal CARS-based model was model CARS-CR-SVR (R2 and RMSE: 0.92 and 1.91 g/kg in validation set, RPD: 3.23). The optimal SI-based model was model SI3-SVR (R2 and RMSE: 0.87 and 2.40 g/kg in validation set, RPD: 2.57) and model SI-SVR (R2 and RMSE: 0.84 and 2.63 g/kg in validation set, RPD: 2.35).

摘要

土壤有机质(SOM)是土壤肥力的关键指标。计算光谱指数和筛选特征波段可以减少高光谱数据的冗余信息,提高 SOM 预测的准确性。本研究旨在比较光谱指数和特征波段对模型精度的改进。本研究在华东江苏省中部平原采集了 178 个表层(0-20cm)土壤样品。首先,在实验室使用 ASD FieldSpec 4 Std-Res 光谱辐射计测量可见近红外(VNIR,350-2500nm)反射光谱,然后对原始反射光谱(R)进行反-log 反射率(LR)、连续去除(CR)、一阶导数反射率(FDR)变换。其次,从每种 VNIR 光谱中计算最优光谱指数(包括偏差拱、差指数、比指数和归一化差指数)。然后分别用竞争自适应重加权采样(CARS)算法从每种光谱中选择特征波段。第三,采用随机森林(RF)、支持向量回归(SVR)、深度神经网络(DNN)和偏最小二乘回归(PLSR)方法,基于最优光谱指数(记为 SI 基模型)和特征波长(记为 CARS 基模型)建立 SOM 预测模型。最后,比较和评估了 SI 基模型和 CARS 基模型的准确性,并选择了最优模型。结果表明:(1)最优光谱指数与 SOM 的相关性增强,相关系数绝对值在 0.66 到 0.83 之间。SI 基模型能准确预测 SOM 含量,验证集的决定系数(R2)和均方根误差(RMSE)值在 0.80 到 0.87 之间,2.40 到 2.88g/kg 之间,相对百分偏差(RPD)值在 2.14 到 2.52 之间。(2)CARS 基模型的准确性因模型和光谱变换而异。对于所有光谱变换,PLSR 和 SVR 结合 CARS 显示出最佳的预测效果(验证集的 R2 和 RMSE 值在 0.87 到 0.92 之间,1.91 到 2.56g/kg 之间,RPD 值在 2.41 到 3.23 之间)。对于 FDR 和 CR 光谱,DNN 和 RF 模型的精度更高(验证集的 R2 和 RMSE 值在 0.69 到 0.91 之间,1.90 到 3.57g/kg 之间,RPD 值在 1.73 到 3.25 之间),而 LR 和 R 光谱的 R2 和 RMSE 值较低(验证集的 R2 和 RMSE 值在 0.20 到 0.35 之间,5.08 到 6.44g/kg 之间,RPD 值在 0.96 到 1.21 之间)。(3)总体而言,SI 基模型的精度略低于 CARS 基模型。但光谱指数对模型有较好的适应性,且每个 SI 基模型的精度相似。对于不同的光谱,CARS 基模型的准确性因建模方法而异。(4)最优 CARS 基模型为模型 CARS-CR-SVR(验证集的 R2 和 RMSE 分别为 0.92 和 1.91g/kg,RPD 为 3.23)。最优 SI 基模型为模型 SI3-SVR(验证集的 R2 和 RMSE 分别为 0.87 和 2.40g/kg,RPD 为 2.57)和模型 SI-SVR(验证集的 R2 和 RMSE 分别为 0.84 和 2.63g/kg,RPD 为 2.35)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac03/10266645/d92d6e63ca7a/pone.0286825.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验