1 Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University , Providence, Rhode Island.
2 Center for Biomedical Engineering, Brown University , Providence, Rhode Island.
Tissue Eng Part C Methods. 2018 Oct;24(10):557-565. doi: 10.1089/ten.TEC.2018.0137. Epub 2018 Sep 20.
The field of tissue engineering is developing new additive manufacturing technologies to fabricate 3D living constructs for use as in vitro platforms for the testing of drugs and chemicals, or to restore lost function in vivo. In this article, we describe the funnel-guide (FG), a new additive manufacturing strategy for the noncontact manipulation and positioning of multicellular microtissues and we show that the FG can be used to build macrotissues layer by layer. We used agarose micromolds to self-assemble cells into toroid-shaped and honeycomb-shaped microtissues, and observed that when falling in cell culture medium, the microtissues spontaneously righted themselves to a horizontal orientation. We fabricated a funnel to guide these falling toroids and honeycombs into precise positions and stack them, wherein they fused to form tubular structures. We tested multiple cell types and toroid sizes, and ultimately used the FG to create a stack of 45 toroids that fused into a tube 5 mm long with an inner diameter of 600 μm. The FG is a new principle for the manipulation of microtissues and is a platform for the layer-by-layer positioning of microtissue building blocks to form macrotissues.
组织工程领域正在开发新的增材制造技术,以制造用于体外药物和化学物质测试的 3D 活体制备物,或恢复体内丧失的功能。在本文中,我们描述了漏斗引导(FG),这是一种用于非接触式操纵和定位多细胞微组织的新型增材制造策略,并展示了 FG 可用于逐层构建大组织。我们使用琼脂糖微模具将细胞自组装成环形和蜂窝状微组织,并观察到当微组织在细胞培养基中下落时,它们会自发地恢复到水平方向。我们制造了一个漏斗来引导这些下落的环和蜂巢进入精确的位置并将它们堆叠起来,在那里它们融合形成管状结构。我们测试了多种细胞类型和环的大小,并最终使用 FG 来创建一个由 45 个环堆叠而成的圆柱体,融合成一个长 5 毫米、内径为 600μm 的管。FG 是一种用于微组织操作的新原理,也是一种用于微组织构建块逐层定位以形成大组织的平台。