Suppr超能文献

构建组织工程化的骨软骨移植物的表型不同的微组织的空间模式。

Spatial patterning of phenotypically distinct microtissues to engineer osteochondral grafts for biological joint resurfacing.

机构信息

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.

出版信息

Biomaterials. 2022 Oct;289:121750. doi: 10.1016/j.biomaterials.2022.121750. Epub 2022 Aug 28.

Abstract

Modular biofabrication strategies using microtissues or organoids as biological building blocks have great potential for engineering replacement tissues and organs at scale. Here we describe the development of a biofabrication strategy to engineer osteochondral tissues by spatially localising phenotypically distinct cartilage microtissues within an instructive 3D printed polymer framework. We first demonstrate that immature cartilage microtissues can spontaneously fuse to form homogeneous macrotissues, and that combining less cellular microtissues results in superior fusion and the generation of a more hyaline-like cartilage containing higher levels of sulphated glycosaminoglycans and type II collagen. Furthermore, temporally exposing developing microtissues to transforming growth factor-β accelerates their volumetric growth and subsequent capacity to fuse into larger hyaline cartilage grafts. Next, 3D printed polymeric frameworks are used to further guide microtissue fusion and the subsequent self-organisation process, resulting in the development of a macroscale tissue with zonal collagen organisation analogous to the structure seen in native articular cartilage. To engineer osteochondral grafts, hypertrophic cartilage microtissues are engineered as bone precursor tissues and spatially localised below phenotypically stable cartilage microtissues. Implantation of these engineered grafts into critically-sized caprine osteochondral defects results in effective defect stabilisation and histologically supports the restoration of a more normal articular surface after 6 months in vivo. These findings support the use of such modular biofabrication strategies for biological joint resurfacing.

摘要

使用微组织或类器官作为生物构建块的模块化生物制造策略在大规模工程替代组织和器官方面具有巨大潜力。在这里,我们描述了一种生物制造策略的发展,该策略通过在指令性 3D 打印聚合物框架内空间定位表型不同的软骨微组织来工程化骨软骨组织。我们首先证明,未成熟的软骨微组织可以自发融合形成同质的大组织,并且组合较少细胞的微组织会导致更好的融合,并产生更透明样的软骨,其中含有更高水平的硫酸化糖胺聚糖和 II 型胶原蛋白。此外,在发育中的微组织中暂时暴露转化生长因子-β会加速其体积生长,并随后有能力融合成更大的透明软骨移植物。接下来,使用 3D 打印聚合物框架进一步指导微组织融合和随后的自组织过程,导致具有类似于天然关节软骨结构的带区胶原组织的宏观组织的发展。为了工程化骨软骨移植物,将肥大的软骨微组织设计为骨前体细胞组织,并在表型稳定的软骨微组织下方空间定位。将这些工程化移植物植入临界大小的山羊骨软骨缺损中,可有效稳定缺损,并在体内 6 个月后在组织学上支持更正常关节表面的恢复。这些发现支持使用这种模块化生物制造策略进行生物关节表面修复。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验