University of St Andrews, School of Chemistry, Purdie Building, North Haugh, St Andrews, UK KY16 9ST.
Dalton Trans. 2018 Sep 11;47(35):12264-12272. doi: 10.1039/c8dt02537a.
A detailed computational probe of the rare earth metal-mediated intramolecular amidination of aminoalkenes with nitriles by an archetypical [Y{N(SiMe3)2}3] precatalyst is presented. The mechanistic picture derived from smooth energy profiles, acquired by employing a reliable computational protocol applied to a realistic catalyst model, conforms to available experimental data that includes a significant primary KIE. Sequential Y-N silylamide aminolysis transforms the precatalyst into a multitude of silylamide/amide compounds, of which the bis-amine coordinated [Y{N(SiMe3)2}(NRR')2] is the most abundant, capable of promoting cycloamidination. Nitrile insertion is irreversible and readily furnishes the κ2-N-amidinate yttrium intermediate, which readily rearranges into more stable isomers featuring κ2-N,Δ and κ1-N(imine) amidinate ligations. Its bis-amine adduct likely represents the catalyst resting state. The alkenylamidine becomes accessible through kinetically affordable Y-N amidinate bond protonolysis, which can best be viewed as a kinetically mobile equilibrium that favours the amidinate. The generation of 2-imidazoline product via N-C bond forming amidinate cyclisation favours a stepwise σ-insertive cyclisation/Y-C alkyl aminolysis sequence over an otherwise kinetically prohibitive proton-triggered concerted N-C/C-H bond forming process. The operative σ-insertive pathway entails reversible olefin 1,2-insertion followed by turnover-limiting Y-C alkyl aminolysis at the short-lived 4-imidazolylalkyl intermediate. The DFT estimated primary KIE associated with aminolysis is gratifyingly close to the observed value, thereby supporting the derived mechanistic view.
呈现了一种典型的[Y{N(SiMe3)2}3]前催化剂介导的氨基酸烯与腈的分子内酰胺化的详细计算研究。通过采用适用于实际催化剂模型的可靠计算方案获得的平滑能量曲线得出的机理图像与包括重要的初级 KIE 在内的可用实验数据一致。顺序的 Y-N 硅酰胺氨解将前催化剂转化为多种硅酰胺/酰胺化合物,其中最丰富的是双胺配位的[Y{N(SiMe3)2}(NRR')2],能够促进环酰胺化。腈插入是不可逆的,很容易生成κ2-N-酰胺基钇中间体,它很容易重排为具有κ2-N、Δ和κ1-N(亚胺)酰胺基配位的更稳定异构体。它的双胺加合物可能代表催化剂的静止状态。烯基脒基通过动力学上可承受的 Y-N 酰胺基键质子解得到,这最好被视为有利于酰胺基的动力学上可移动的平衡。通过 N-C 键形成酰胺基环化生成 2-咪唑啉产物有利于分步σ-插入环化/Y-C 烷基氨基裂解序列,而不是动力学上禁止的质子引发的协同 N-C/C-H 键形成过程。可操作的σ-插入途径需要可逆的烯烃 1,2-插入,然后在短寿命的 4-咪唑基烷基中间体上进行周转限制的 Y-C 烷基氨基裂解。与氨解相关的 DFT 估计的初级 KIE 与观察值非常接近,从而支持了推导的机理观点。