Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, TN 37232, USA.
Alnylam Pharmaceuticals, 300 Third Street, Cambridge, MA 02142, USA.
Nucleic Acids Res. 2018 Sep 19;46(16):8090-8104. doi: 10.1093/nar/gky703.
Chemical modification is a prerequisite of oligonucleotide therapeutics for improved metabolic stability, uptake and activity, irrespective of their mode of action, i.e. antisense, RNAi or aptamer. Phosphate moiety and ribose C2'/O2' atoms are the most common sites for modification. Compared to 2'-O-substituents, ribose 4'-C-substituents lie in proximity of both the 3'- and 5'-adjacent phosphates. To investigate potentially beneficial effects on nuclease resistance we combined 2'-F and 2'-OMe with 4'-Cα- and 4'-Cβ-OMe, and 2'-F with 4'-Cα-methyl modification. The α- and β-epimers of 4'-C-OMe-uridine and the α-epimer of 4'-C-Me-uridine monomers were synthesized and incorporated into siRNAs. The 4'α-epimers affect thermal stability only minimally and show increased nuclease stability irrespective of the 2'-substituent (H, F, OMe). The 4'β-epimers are strongly destabilizing, but afford complete resistance against an exonuclease with the phosphate or phosphorothioate backbones. Crystal structures of RNA octamers containing 2'-F,4'-Cα-OMe-U, 2'-F,4'-Cβ-OMe-U, 2'-OMe,4'-Cα-OMe-U, 2'-OMe,4'-Cβ-OMe-U or 2'-F,4'-Cα-Me-U help rationalize these observations and point to steric and electrostatic origins of the unprecedented nuclease resistance seen with the chain-inverted 4'β-U epimer. We used structural models of human Argonaute 2 in complex with guide siRNA featuring 2'-F,4'-Cα-OMe-U or 2'-F,4'-Cβ-OMe-U at various sites in the seed region to interpret in vitro activities of siRNAs with the corresponding 2'-/4'-C-modifications.
化学修饰是提高寡核苷酸治疗剂代谢稳定性、摄取和活性的前提条件,无论其作用模式如何,即反义、RNAi 或适体。磷酸部分和核糖 C2'/O2'原子是最常见的修饰部位。与 2'-O-取代基相比,核糖 4'-C-取代基位于 3'-和 5'-相邻磷酸基的附近。为了研究对核酸酶抗性的潜在有益影响,我们将 2'-F 和 2'-OMe 与 4'-Cα-和 4'-Cβ-OMe 以及 2'-F 与 4'-Cα-甲基修饰相结合。4'-C-OMe-尿苷的 α-和 β-差向异构体以及 4'-C-Me-尿苷的 α-差向异构体单体被合成并掺入 siRNA 中。4'α-差向异构体仅对热稳定性产生最小影响,并且显示出增加的核酸酶稳定性,无论 2'-取代基(H、F、OMe)如何。4'β-差向异构体是强烈不稳定的,但可完全抵抗具有磷酸或硫代磷酸酯骨架的外切核酸酶。含有 2'-F、4'-Cα-OMe-U、2'-F、4'-Cβ-OMe-U、2'-OMe、4'-Cα-OMe-U、2'-OMe、4'-Cβ-OMe-U 或 2'-F、4'-Cα-Me-U 的 RNA 八聚体的晶体结构有助于合理化这些观察结果,并指出链倒置 4'β-U 差向异构体所表现出的前所未有的核酸酶抗性的立体和静电起源。我们使用在种子区域的各种位点处具有 2'-F、4'-Cα-OMe-U 或 2'-F、4'-Cβ-OMe-U 的人 Argonaute 2 与指导 siRNA 复合物的结构模型来解释具有相应 2'-/4'-C-修饰的 siRNA 的体外活性。