Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany;
The Oceans Institute M047, University of Western Australia, Crawley, WA 6009, Australia.
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8266-E8275. doi: 10.1073/pnas.1719335115. Epub 2018 Aug 14.
Marine microbes along with microeukaryotes are key regulators of oceanic biogeochemical pathways. Here we present a high-resolution (every 0.5° of latitude) dataset describing microbial pro- and eukaryotic richness in the surface and just below the thermocline along a 7,000-km transect from 66°S at the Antarctic ice edge to the equator in the South Pacific Ocean. The transect, conducted in austral winter, covered key oceanographic features including crossing of the polar front (PF), the subtropical front (STF), and the equatorial upwelling region. Our data indicate that temperature does not determine patterns of marine microbial richness, complementing the global model data from Ladau et al. [Ladau J, et al. (2013) ISME J 7:1669-1677]. Rather, NH, nanophytoplankton, and primary productivity were the main drivers for archaeal and bacterial richness. Eukaryote richness was highest in the least-productive ocean region, the tropical oligotrophic province. We also observed a unique diversity pattern in the South Pacific Ocean: a regional increase in archaeal and bacterial diversity between 10°S and the equator. Rapoport's rule describes the tendency for the latitudinal ranges of species to increase with latitude. Our data showed that the mean latitudinal ranges of archaea and bacteria decreased with latitude. We show that permanent oceanographic features, such as the STF and the equatorial upwelling, can have a significant influence on both alpha-diversity and beta-diversity of pro- and eukaryotes.
海洋微生物与微型真核生物是海洋生物地球化学途径的关键调节者。在这里,我们呈现了一个高分辨率(每 0.5°纬度)的数据集,描述了在南太平洋从南极冰缘到赤道的 7000 公里航线上,从表面到温跃层以下的微生物原核生物和真核生物丰富度。该航线在南半球冬季进行,涵盖了关键的海洋学特征,包括穿越极地锋(PF)、亚热带锋(STF)和赤道上升流区。我们的数据表明,温度并不能决定海洋微生物丰富度的模式,这与 Ladau 等人的全球模型数据相补充。[Ladau J, et al. (2013) ISME J 7:1669-1677]。相反,NH、纳米浮游植物和初级生产力是古菌和细菌丰富度的主要驱动因素。真核生物丰富度在生产力最低的海洋区域,即热带寡营养区最高。我们还观察到南太平洋海洋的一个独特的多样性模式:在 10°S 和赤道之间,古菌和细菌多样性呈区域性增加。拉波波特法则描述了物种的纬度范围随纬度增加的趋势。我们的数据表明,古菌和细菌的平均纬度范围随纬度的增加而减小。我们表明,永久性的海洋特征,如 STF 和赤道上升流,对原核生物和真核生物的 alpha 多样性和 beta 多样性都有重大影响。