Suppr超能文献

海洋学边界限制了南太平洋微生物多样性梯度。

Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean.

机构信息

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany;

The Oceans Institute M047, University of Western Australia, Crawley, WA 6009, Australia.

出版信息

Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8266-E8275. doi: 10.1073/pnas.1719335115. Epub 2018 Aug 14.

Abstract

Marine microbes along with microeukaryotes are key regulators of oceanic biogeochemical pathways. Here we present a high-resolution (every 0.5° of latitude) dataset describing microbial pro- and eukaryotic richness in the surface and just below the thermocline along a 7,000-km transect from 66°S at the Antarctic ice edge to the equator in the South Pacific Ocean. The transect, conducted in austral winter, covered key oceanographic features including crossing of the polar front (PF), the subtropical front (STF), and the equatorial upwelling region. Our data indicate that temperature does not determine patterns of marine microbial richness, complementing the global model data from Ladau et al. [Ladau J, et al. (2013) ISME J 7:1669-1677]. Rather, NH, nanophytoplankton, and primary productivity were the main drivers for archaeal and bacterial richness. Eukaryote richness was highest in the least-productive ocean region, the tropical oligotrophic province. We also observed a unique diversity pattern in the South Pacific Ocean: a regional increase in archaeal and bacterial diversity between 10°S and the equator. Rapoport's rule describes the tendency for the latitudinal ranges of species to increase with latitude. Our data showed that the mean latitudinal ranges of archaea and bacteria decreased with latitude. We show that permanent oceanographic features, such as the STF and the equatorial upwelling, can have a significant influence on both alpha-diversity and beta-diversity of pro- and eukaryotes.

摘要

海洋微生物与微型真核生物是海洋生物地球化学途径的关键调节者。在这里,我们呈现了一个高分辨率(每 0.5°纬度)的数据集,描述了在南太平洋从南极冰缘到赤道的 7000 公里航线上,从表面到温跃层以下的微生物原核生物和真核生物丰富度。该航线在南半球冬季进行,涵盖了关键的海洋学特征,包括穿越极地锋(PF)、亚热带锋(STF)和赤道上升流区。我们的数据表明,温度并不能决定海洋微生物丰富度的模式,这与 Ladau 等人的全球模型数据相补充。[Ladau J, et al. (2013) ISME J 7:1669-1677]。相反,NH、纳米浮游植物和初级生产力是古菌和细菌丰富度的主要驱动因素。真核生物丰富度在生产力最低的海洋区域,即热带寡营养区最高。我们还观察到南太平洋海洋的一个独特的多样性模式:在 10°S 和赤道之间,古菌和细菌多样性呈区域性增加。拉波波特法则描述了物种的纬度范围随纬度增加的趋势。我们的数据表明,古菌和细菌的平均纬度范围随纬度的增加而减小。我们表明,永久性的海洋特征,如 STF 和赤道上升流,对原核生物和真核生物的 alpha 多样性和 beta 多样性都有重大影响。

相似文献

1
Oceanographic boundaries constrain microbial diversity gradients in the South Pacific Ocean.
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8266-E8275. doi: 10.1073/pnas.1719335115. Epub 2018 Aug 14.
2
Oceanic Microplankton Do Not Adhere to the Latitudinal Diversity Gradient.
Microb Ecol. 2020 Feb;79(2):511-515. doi: 10.1007/s00248-019-01413-8. Epub 2019 Aug 7.
5
Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness.
J Therm Biol. 2020 Aug;92:102692. doi: 10.1016/j.jtherbio.2020.102692. Epub 2020 Aug 14.
6
Planktonic equatorial diversity troughs: fact or artifact? Latitudinal diversity gradients in Radiolaria.
Ecology. 2017 Jan;98(1):112-124. doi: 10.1002/ecy.1623. Epub 2016 Dec 9.
7
Contrasting Community Assembly Mechanisms Underlie Similar Biogeographic Patterns of Surface Microbiota in the Tropical North Pacific Ocean.
Microbiol Spectr. 2022 Feb 23;10(1):e0079821. doi: 10.1128/spectrum.00798-21. Epub 2022 Jan 12.
8
Eastern Pacific molluscan provinces and latitudinal diversity gradient: no evidence for "Rapoport's rule".
Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8871-4. doi: 10.1073/pnas.91.19.8871.
9
Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean.
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2200014119. doi: 10.1073/pnas.2200014119. Epub 2022 Sep 6.

引用本文的文献

1
Particle-Associated Bacterioplankton Communities Across the Red Sea.
Environ Microbiol. 2025 Mar;27(3):e70075. doi: 10.1111/1462-2920.70075.
3
Horizontal distribution of marine microbial communities in the North Pacific Subtropical Front.
Front Microbiol. 2024 Dec 24;15:1455196. doi: 10.3389/fmicb.2024.1455196. eCollection 2024.
5
Unveiling the microbial diversity across the northern Ninety East Ridge in the Indian Ocean.
Front Microbiol. 2024 Sep 24;15:1436735. doi: 10.3389/fmicb.2024.1436735. eCollection 2024.
6
The eukaryome of modern microbialites reveals distinct colonization across aquatic ecosystems.
NPJ Biofilms Microbiomes. 2024 Sep 3;10(1):78. doi: 10.1038/s41522-024-00547-z.
7
Bacterial biogeography of the Indian Ocean.
Limnol Oceanogr. 2024 Jan;69(1):67-80. doi: 10.1002/lno.12459. Epub 2023 Nov 27.
8
Global biogeography of the smallest plankton across ocean depths.
Sci Adv. 2023 Nov 10;9(45):eadg9763. doi: 10.1126/sciadv.adg9763. Epub 2023 Nov 8.

本文引用的文献

1
Microorganisms and ocean global change.
Nat Microbiol. 2017 May 25;2:17058. doi: 10.1038/nmicrobiol.2017.58.
2
Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database.
Gigascience. 2016 May 18;5:21. doi: 10.1186/s13742-016-0126-5. eCollection 2016.
3
Importance of salt fingering for new nitrogen supply in the oligotrophic ocean.
Nat Commun. 2015 Sep 9;6:8002. doi: 10.1038/ncomms9002.
4
Ocean plankton. Structure and function of the global ocean microbiome.
Science. 2015 May 22;348(6237):1261359. doi: 10.1126/science.1261359.
5
Resource supply overrides temperature as a controlling factor of marine phytoplankton growth.
PLoS One. 2014 Jun 12;9(6):e99312. doi: 10.1371/journal.pone.0099312. eCollection 2014.
6
Geographical limits to species-range shifts are suggested by climate velocity.
Nature. 2014 Mar 27;507(7493):492-5. doi: 10.1038/nature12976. Epub 2014 Feb 9.
8
UPARSE: highly accurate OTU sequences from microbial amplicon reads.
Nat Methods. 2013 Oct;10(10):996-8. doi: 10.1038/nmeth.2604. Epub 2013 Aug 18.
9
Global marine bacterial diversity peaks at high latitudes in winter.
ISME J. 2013 Sep;7(9):1669-77. doi: 10.1038/ismej.2013.37. Epub 2013 Mar 21.
10
Marine bacteria exhibit a bipolar distribution.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2342-7. doi: 10.1073/pnas.1212424110. Epub 2013 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验