Fry I V, Lazaroff N, Packer L
Arch Biochem Biophys. 1986 May 1;246(2):650-4. doi: 10.1016/0003-9861(86)90321-8.
Iron(II) oxidation by pH 2.5 HCl-washed cells of Thiobacillus ferrooxidans is known to be sulfate dependent. Sulfate dependence of the autooxidation of a novel component in the electron transport pathway is demonstrated. This component exhibits an electron paramagnetic resonance (EPR) signal in the oxidized state at g = 2.005 distinguishable from the g = 2.08 signal attributed to rusticyanin. The novel component is proposed to be a three-iron-sulfur cluster based upon the g value, lineshape, and temperature dependence. Oxyanion specificity for the EPR signal has the same dependence on sulfate as does iron(II) oxidation. By using azide to inhibit electron transfer to oxygen, sulfate was shown to be involved in electron transfer from the g = 2.005 component to the copper of rusticyanin.