Denya Ireen, Malan Sarel F, Enogieru Adaze B, Omoruyi Sylvester I, Ekpo Okobi E, Kapp Erika, Zindo Frank T, Joubert Jacques
Pharmaceutical Chemistry , School of Pharmacy , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa . Email:
Department of Medical Biosciences , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa.
Medchemcomm. 2018 Jan 16;9(2):357-370. doi: 10.1039/c7md00569e. eCollection 2018 Feb 1.
A series of indole derivatives was designed and synthesised to improve on activity and circumvent pharmacokinetic limitations experienced with the structurally related compound, ladostigil. The compounds consisted of a propargylamine moiety (a known MAO inhibitor and neuroprotector) at the 1 position and a ChE inhibiting diethyl-carbamate/urea moiety at the 5 or 6 position of the indole ring. In order to prevent or slow down the hydrolysis and deactivation associated with the carbamate function of ladostigil, a urea moeity was incorporated into selected compounds to obtain more metabolically stable structures. The majority of the synthesised compounds showed improved MAO-A inhibitory activity compared to ladostigil. The compounds possessing the propargylamine moiety showed good MAO-B inhibitory activity with and portraying IC values between 14-20 fold better than ladostigil. The ChE assay results indicated that the compounds have non-selective inhibitory activities on eeAChE and eqBuChE regardless of the type or position of substitution (IC: 2-5 μM). MAO-A and MAO-B docking results showed that the propargylamine moiety was positioned in close proximity to the FAD cofactor suggesting that the good inhibitory activity may be attributed to the propargylamine moiety and irreversible inhibition as confirmed in the reversibility studies. Docking results also indicated that the compounds have interactions with important amino acids in the AChE and BuChE catalytic sites. Compound was the most potent multifunctional agent showing better inhibitory activity than ladostigil on all enzymes tested (hMAO-A IC = 4.31 μM, hMAO-B IC = 2.62 μM, eeAChE IC = 3.70 μM, eqBuChE IC = 2.82 μM). Chemical stability tests confirmed the diethyl-urea containing compound to be more stable than its diethyl-carbamate containing counterpart compound . Compound also exerted significant neuroprotection (52.62% at 1 μM) against MPP insult to SH-SY5Y neural cells and has good predicted ADMET properties. The favourable neuronal enzyme inhibitory activity, likely improved pharmacokinetic properties and the potent neuroprotective ability of compound make it a promising compound for further development.
设计并合成了一系列吲哚衍生物,以改善活性并规避与结构相关化合物雷沙吉兰所经历的药代动力学限制。这些化合物在吲哚环的1位含有炔丙胺部分(一种已知的单胺氧化酶抑制剂和神经保护剂),在5或6位含有胆碱酯酶抑制性二乙基氨基甲酸酯/脲部分。为了防止或减缓与雷沙吉兰的氨基甲酸酯功能相关的水解和失活,在选定的化合物中引入了脲部分,以获得代谢更稳定的结构。与雷沙吉兰相比,大多数合成化合物显示出改善的单胺氧化酶-A抑制活性。具有炔丙胺部分的化合物显示出良好的单胺氧化酶-B抑制活性,其IC值比雷沙吉兰高14 - 20倍。胆碱酯酶测定结果表明,无论取代类型或位置如何,这些化合物对乙酰胆碱酯酶和丁酰胆碱酯酶均具有非选择性抑制活性(IC:2 - 5 μM)。单胺氧化酶-A和单胺氧化酶-B对接结果表明,炔丙胺部分位于与黄素腺嘌呤二核苷酸辅因子紧密相邻的位置,这表明良好的抑制活性可能归因于炔丙胺部分和不可逆抑制,这在可逆性研究中得到了证实。对接结果还表明,这些化合物与乙酰胆碱酯酶和丁酰胆碱酯酶催化位点中的重要氨基酸相互作用。化合物在所有测试的酶上表现出比雷沙吉兰更好的抑制活性,是最有效的多功能药物(人单胺氧化酶-A IC = 4.31 μM,人单胺氧化酶-B IC = 2.62 μM,乙酰胆碱酯酶IC = 3.70 μM,丁酰胆碱酯酶IC = 2.82 μM)。化学稳定性测试证实,含二乙基脲的化合物比其含二乙基氨基甲酸酯的对应化合物更稳定。化合物对1-甲基-4-苯基吡啶离子对SH-SY5Y神经细胞的损伤也具有显著的神经保护作用(1 μM时为52.62%),并且具有良好的预测药物代谢动力学、药物代谢、药物分布、药物排泄和药物毒性性质。化合物良好的神经元酶抑制活性、可能改善的药代动力学性质以及强大的神经保护能力使其成为一种有前途的进一步开发化合物。