Suppr超能文献

基于层次聚类的电力系统故障可观测性最优相量测量单元(PMU)配置

Hierarchical Clustering based optimal PMU placement for power system fault observability.

作者信息

Eissa Moustafa, Kassem Amr

机构信息

Department of Electrical Engineering, Faculty of Engineering, Helwan University, Cairo, Egypt.

出版信息

Heliyon. 2018 Aug 8;4(8):e00725. doi: 10.1016/j.heliyon.2018.e00725. eCollection 2018 Aug.

Abstract

Optimal number and location of phasor measurement units (PMUs) in the power system networks faces challenges for achieving the full network observability during fault conditions. Achieving fault observability approach requires more constraints than normal system observability and consequently suffers from complex analysis and heavy computational burden for the large-scale networks. A new algorithm for determining the optimal PMU placement considering the network fault observability is introduced. The proposed algorithm is achieved through four stages. The first stage is achieved through the network fault simulation to obtain the post fault change in voltage (ΔV) at each bus. Then, the post fault change in voltage (ΔV) is used to build the network connectivity matrix (CM) and forming a new developed Faulted Connectivity Matrix (FCM) that describes the power system topology during the fault conditions. The correlation between the buses is obtained, in the second stage, by applying Pearson correlation coefficient. Hierarchical Clustering technique is given, in the third stage, to cluster the network into coherent zones to find the most correlated buses. Finally, the optimal location of the PMUs is identified within each zone based on simple proposed placement rules. The proposed algorithm is tested under a variety of fault events applied on different standard test systems. The results show the simplicity and the effectiveness of the proposed algorithm.

摘要

电力系统网络中相量测量单元(PMU)的最佳数量和位置在故障情况下实现全网络可观测性方面面临挑战。实现故障可观测性方法比正常系统可观测性需要更多约束,因此对于大规模网络而言,存在复杂分析和繁重计算负担的问题。本文介绍了一种考虑网络故障可观测性来确定最佳PMU配置的新算法。该算法通过四个阶段实现。第一阶段通过网络故障仿真来获取各母线处故障后的电压变化量(ΔV)。然后,利用故障后的电压变化量(ΔV)构建网络连通性矩阵(CM),并形成一个新开发的故障连通性矩阵(FCM),该矩阵描述了故障情况下的电力系统拓扑结构。在第二阶段,通过应用皮尔逊相关系数来获得母线之间的相关性。在第三阶段,采用层次聚类技术将网络聚类为相干区域,以找到相关性最强的母线。最后,根据简单的配置规则在每个区域内确定PMU的最佳位置。在不同标准测试系统上施加各种故障事件的情况下对所提出的算法进行了测试。结果表明了该算法的简单性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca98/6088460/092b83651c6e/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验