The Laboratory of Game Theory and Decision Making, National Research University Higher School of Economics, Saint-Petersburg 194100, Russia.
Computational Genomics, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598.
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8135-E8142. doi: 10.1073/pnas.1805847115. Epub 2018 Aug 15.
Tropical geometry, an established field in pure mathematics, is a place where string theory, mirror symmetry, computational algebra, auction theory, and so forth meet and influence one another. In this paper, we report on our discovery of a tropical model with self-organized criticality (SOC) behavior. Our model is continuous, in contrast to all known models of SOC, and is a certain scaling limit of the sandpile model, the first and archetypical model of SOC. We describe how our model is related to pattern formation and proportional growth phenomena and discuss the dichotomy between continuous and discrete models in several contexts. Our aim in this context is to present an idealized tropical toy model (cf. Turing reaction-diffusion model), requiring further investigation.
热带几何是纯数学中的一个成熟领域,是弦论、镜像对称、计算代数、拍卖理论等相互交汇和影响的地方。在本文中,我们报告了我们发现的具有自组织临界性(SOC)行为的热带模型。我们的模型是连续的,与所有已知的 SOC 模型不同,并且是沙堆模型的某个标度极限,沙堆模型是 SOC 的第一个也是典型的模型。我们描述了我们的模型如何与模式形成和比例增长现象相关联,并在几个上下文中讨论了连续和离散模型之间的二分法。在这种情况下,我们的目的是提出一个理想化的热带玩具模型(参见图灵反应扩散模型),需要进一步研究。