Suppr超能文献

A quantitative estimate of the contribution made by various receptor categories to the depolarizations evoked by some excitatory amino acids in the olfactory cortex.

作者信息

Collins G G, Brown G

出版信息

Brain Res. 1986 Apr 16;371(1):9-16. doi: 10.1016/0006-8993(86)90804-8.

Abstract

A study has been undertaken to assess the percentage contributions made by N-methyl-D-aspartate (NMDA), kainate and quisqualate receptors to the composite depolarizations evoked by L-cysteate, L-cysteinesulphinate, L-homocysteate and S-sulpho-L-cysteine in the rat olfactory cortex slice. The percentage contribution made by NMDA receptors, which was quantified by measuring the reduction in agonist responses in the presence of the highly selective NMDA receptor antagonist 2-amino-5-phosphonopentanoate (0.1 mM), was: L-homocysteate, 73%; S-sulpho-L-cysteine, 65%; L-cysteate, 42% and L-cysteinesulphinate, 30%. Responses mediated by NMDA, kainate and quisqualate receptors were abolished by a 'desensitization' procedure involving repeated application of a mixture containing high concentrations of the selective agonists followed by perfusion of the non-selective receptor antagonist cis-2,3-piperidine dicarboxylate (5 mM). Following this procedure, responses to L-homocysteate and S-sulpho-L-cysteine were almost abolished and simple calculation gave the contribution of kainate plus quisqualate receptors to the agonist responses as: L-cysteinesulphinate, 46%; L-cysteate, 34%; S-sulpho-L-cysteine, 28% and L-homocysteate, 23%. However, approximately 24% of the composite depolarizations evoked by L-cysteate and L-cysteinesulphinate was mediated by a mechanism not involving NMDA, kainate or quisqualate receptors, neither did it reflect possible electrogenic uptake of the amino acids nor an interaction with 2-amino-4-phosphonobutyrate receptors. It is suggested that this fraction of the depolarizations evoked by L-cysteate and L-cysteinesulphinate might be due to a non-receptor-mediated release of K+ or, perhaps, to activation of an as yet unidentified receptor category.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验