Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.
Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America.
PLoS Pathog. 2018 Aug 16;14(8):e1007198. doi: 10.1371/journal.ppat.1007198. eCollection 2018 Aug.
The sedentary plant-parasitic nematodes are considered among the most economically damaging pathogens of plants. Following infection and the establishment of a feeding site, sedentary nematodes become immobile. Loss of mobility is reversed in adult males while females never regain mobility. The structural basis for this change in mobility is unknown. We used a combination of light and transmission electron microscopy to demonstrate cell-specific muscle atrophy and sex-specific renewal of neuromuscular tissue in the sedentary nematode Heterodera glycines. We found that both females and males undergo body wall muscle atrophy and loss of attachment to the underlying cuticle during immobile developmental stages. Male H. glycines undergo somatic muscle renewal prior to molting into a mobile adult. In addition, we found developmental changes to the organization and number of motor neurons in the ventral nerve cord correlated with changes in mobility. To further examine neuronal changes associated with immobility, we used a combination of immunohistochemistry and molecular biology to characterize the GABAergic nervous system of H. glycines during mobile and immobile stages. We cloned and confirmed the function of the putative H. glycines GABA synthesis-encoding gene hg-unc-25 using heterologous rescue in C. elegans. We found a reduction in gene expression of hg-unc-25 as well as a reduction in the number of GABA-immunoreactive neurons during immobile developmental stages. Finally, we found evidence of similar muscle atrophy in the phylogenetically diverged plant-parasitic nematode Meloidogyne incognita. Together, our data demonstrate remodeling of neuromuscular structure and function during sedentary plant-parasitic nematode development.
固着性植物寄生线虫被认为是对植物危害最大的病原体之一。在感染并建立取食部位后,固着性线虫就不再移动。成年雄性线虫的移动性丧失可以恢复,而雌性线虫则永远无法恢复移动性。这种移动性变化的结构基础尚不清楚。我们结合使用光学显微镜和透射电子显微镜,证明了固着性线虫大豆胞囊线虫中存在细胞特异性肌肉萎缩和性别特异性神经肌肉组织更新。我们发现,无论是雌性还是雄性,在固着发育阶段都会经历体壁肌肉萎缩和与下面的角质层失去附着。雄性大豆胞囊线虫在蜕皮为可移动成虫之前会经历体细胞肌肉更新。此外,我们还发现,腹神经索中运动神经元的组织和数量的发育变化与移动性变化相关。为了进一步研究与不活动相关的神经元变化,我们使用免疫组织化学和分子生物学相结合的方法,研究了活动和不活动阶段大豆胞囊线虫的 GABA 能神经系统。我们克隆并证实了拟南芥 hg-unc-25 的 GABA 合成编码基因 hg-unc-25 的功能,通过在秀丽隐杆线虫中的异源拯救实验。我们发现,在不活动的发育阶段,hg-unc-25 的基因表达减少,以及 GABA 免疫反应性神经元的数量减少。最后,我们发现了在系统发育上分化较大的植物寄生线虫根结线虫中存在类似的肌肉萎缩现象。总之,我们的数据表明,在固着性植物寄生线虫的发育过程中,神经肌肉结构和功能发生了重塑。