Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Phys Chem Chem Phys. 2018 Aug 29;20(34):22134-22147. doi: 10.1039/c8cp03586e.
We developed a ReaxFF reactive force field for NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP) materials, which is a promising solid-electrolyte that may enable all-solid-state lithium-ion batteries. The force field parameters were optimized based on density functional theory (DFT) data, including equations of state and the heats of formation of ternary metal oxides and metal phosphate crystal phases (e.g., LixTiO2, Al2TiO5, LiAlO2, AlPO4, Li3PO4 and LiTi2(PO4)3 (LTP)), and the energy barriers for Li diffusion in TiO2 and LTP via vacancies and interstitial sites. Using ReaxFF, the structural and the energetic features of LATP were described properly across various compositions - Li occupies more preferentially the interstitial site next to Al than next to Ti. Also, as observed in experimental data, the lattice parameters decrease when Ti is partly substituted by Al because of the smaller size of the Al cation. Using this force field, the diffusion mechanism and the ionic conductivity of Li in LTP and LATP were investigated at T = 300-1100 K. Low ionic conductivity (5.9 × 10-5 S cm-1 at 300 K) was obtained in LTP as previously reported. In LATP at x = 0.2, the ionic conductivity was slightly improved (8.4 × 10-5 S cm-1), but it is still below the experimental value, which is on the order of 10-4 to 10-3 S cm-1 at x = 0.3-0.5. At higher x (higher Al composition), LATP has a configurational diversity due to the Al substitution and the concomitant insertion of Li. By performing a hybrid MC/MD simulation for LATP at x = 0.5, a thermodynamically stable LATP configuration was obtained. The ionic conductivity of this LATP configuration was calculated to be 7.4 × 10-4 S cm-1 at 300 K, which is one order of magnitude higher than the ionic conductivity for LTP and LATP at x = 0.2. This value is in good agreement with our experimental value (2.5 × 10-4 S cm-1 at 300 K) and the literature values. The composition-dependent ionic conductivity of LATP was successfully demonstrated using the ReaxFF reactive force field, verifying the applicability of the LATP force field for the understanding of Li diffusion and the design of highly Li ion conductive solid electrolytes. Furthermore, our results also demonstrate the feasibility of the MC/MD method in modeling LATP configuration, and provide compelling evidence for the solid solution sensitivity on ionic conductivity.
我们为 NASICON 型 Li1+xAlxTi2-x(PO4)3 (LATP) 材料开发了一种 ReaxFF 反应力场,这是一种很有前途的固体电解质,可能使全固态锂离子电池成为可能。力场参数是基于密度泛函理论 (DFT) 数据优化的,包括三元金属氧化物和金属磷酸盐晶体相(例如 LixTiO2、Al2TiO5、LiAlO2、AlPO4、Li3PO4 和 LiTi2(PO4)3 (LTP)) 的状态方程和生成热,以及通过空位和间隙位 Li 在 TiO2 和 LTP 中的扩散能垒。使用 ReaxFF,可以在各种组成下正确描述 LATP 的结构和能量特征——Li 更倾向于占据 Al 旁边的间隙位而不是 Ti 旁边的间隙位。此外,正如实验数据所观察到的,由于 Al 阳离子的尺寸较小,当 Ti 部分被 Al 取代时,晶格参数会减小。使用这种力场,在 T = 300-1100 K 下研究了 Li 在 LTP 和 LATP 中的扩散机制和离子电导率。正如先前报道的那样,在 LTP 中获得了低离子电导率(300 K 时为 5.9 × 10-5 S cm-1)。在 x = 0.2 的 LATP 中,离子电导率略有提高(8.4 × 10-5 S cm-1),但仍低于实验值,在 x = 0.3-0.5 时约为 10-4 至 10-3 S cm-1。在更高的 x(更高的 Al 组成)下,由于 Al 的取代和 Li 的插入,LATP 具有构象多样性。通过对 x = 0.5 的 LATP 进行 MC/MD 混合模拟,获得了热力学稳定的 LATP 构型。计算得到该 LATP 构型在 300 K 时的离子电导率为 7.4 × 10-4 S cm-1,比 x = 0.2 的 LTP 和 LATP 的离子电导率高一个数量级。该值与我们的实验值(300 K 时为 2.5 × 10-4 S cm-1)和文献值吻合较好。使用 ReaxFF 反应力场成功地证明了 LATP 的组成依赖性离子电导率,验证了 LATP 力场在理解 Li 扩散和设计高锂离子导电固体电解质方面的适用性。此外,我们的结果还证明了 MC/MD 方法在建模 LATP 构型方面的可行性,并为离子电导率的固溶体敏感性提供了有力证据。