Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
Department of Electrical Engineering, Princeton University, New York, NJ, USA.
Nat Commun. 2018 Aug 17;9(1):3299. doi: 10.1038/s41467-018-05775-4.
The interplay between electron-electron interactions and the honeycomb topology is expected to produce exotic quantum phenomena and find applications in advanced devices. Semiconductor-based artificial graphene (AG) is an ideal system for these studies that combines high-mobility electron gases with AG topology. However, to date, low-disorder conditions that reveal the interplay of electron-electron interaction with AG symmetry have not been achieved. Here, we report the creation of low-disorder AG that preserves the near-perfection of the pristine electron layer by fabricating small period triangular antidot lattices on high-quality quantum wells. Resonant inelastic light scattering spectra show collective spin-exciton modes at the M-point's nearly flatband saddle-point singularity in the density of states. The observed Coulomb exchange interaction energies are comparable to the gap of Dirac bands at the M-point, demonstrating interplay between quasiparticle interactions and the AG potential. The saddle-point exciton energies are in the terahertz range, making low-disorder AG suitable for contemporary optoelectronic applications.
电子-电子相互作用和蜂窝拓扑结构之间的相互作用有望产生奇异的量子现象,并在先进设备中找到应用。基于半导体的人造石墨烯 (AG) 是此类研究的理想体系,它将高迁移率电子气体与 AG 拓扑结构结合在一起。然而,迄今为止,还没有达到揭示电子-电子相互作用与 AG 对称性相互作用的低无序条件。在这里,我们通过在高质量量子阱上制造小周期三角形反点晶格,报告了低无序 AG 的创建,从而保留了原始电子层的近乎完美性。在态密度中,共振非弹性光散射光谱显示出在 M 点的近平带鞍点奇异处的集体自旋激子模式。观察到的库仑交换相互作用能量与 M 点的狄拉克能带隙相当,表明准粒子相互作用和 AG 势之间的相互作用。鞍点激子能量处于太赫兹范围内,使得低无序 AG 适合于当代光电应用。