Suppr超能文献

由时间周期栅极电压驱动的拓扑绝缘体表面上的时间反演不变共振背散射。

Time-reversal invariant resonant backscattering on a topological insulator surface driven by a time-periodic gate voltage.

作者信息

Deng Ming-Xun, Ma R, Luo Wei, Shen R, Sheng L, Xing D Y

机构信息

National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China.

Laboratory of Quantum Engineering and Quantum Materials, ICMP and SPTE, South China Normal University, Guangzhou, 510006, China.

出版信息

Sci Rep. 2018 Aug 17;8(1):12338. doi: 10.1038/s41598-018-29950-1.

Abstract

We study the scattering of the Dirac electrons by a point-like nonmagnetic impurity on the surface of a topological insulator, driven by a time-periodic gate voltage. It is found that, due to the doublet degenerate crossing points of different Floquet sidebands, resonant backscattering can happen for the surface electrons, even without breaking the time-reversal (TR) symmetry of the topological surface states (TSSs). The energy spectrum is reshuffled in a way quite different from that for the circularly polarized light, so that new features are exhibited in the Friedel oscillations of the local charge and spin density of states. Although the electron scattering is dramatically modified by the driving voltage, the 1/ρ scale law of the spin precession persists for the TSSs. The TR invariant backscattering provides a possible way to engineer the Dirac electronic spectrum of the TSSs, without destroying the unique property of spin-momentum interlocking of the TSSs.

摘要

我们研究了在时间周期栅极电压驱动下,拓扑绝缘体表面点状非磁性杂质对狄拉克电子的散射。研究发现,由于不同弗洛凯边带的双重简并交叉点,即使不破坏拓扑表面态(TSSs)的时间反演(TR)对称性,表面电子也可能发生共振背散射。能谱的重新排列方式与圆偏振光的情况有很大不同,从而在局域电荷和态密度的弗里德尔振荡中展现出新的特征。尽管驱动电压极大地改变了电子散射,但TSSs的自旋进动的1/ρ标度律仍然成立。TR不变背散射为设计TSSs的狄拉克电子能谱提供了一种可能的方法,同时又不破坏TSSs自旋 - 动量互锁的独特性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a641/6098087/1f631765ccee/41598_2018_29950_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验