Suppr超能文献

基于递归最小二乘法的回声状态网络算法用于心电图去噪

[An echo state network algorithm based on recursive least square for electrocardiogram denoising].

作者信息

Zhang Jieshuo, Liu Ming, Li Xin, Xiong Peng, Liu Xiuling

机构信息

Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, Hebei 071002, P.R.China.

Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, Hebei 071002,

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Aug 25;35(4):539-549. doi: 10.7507/1001-5515.201710072.

Abstract

Electrocardiogram (ECG) is easily submerged in noise of the complex environment during remote medical treatment, and this affects the intelligent diagnosis of cardiovascular diseases. Considering this situation, this paper proposes an echo state network (ESN) denoising algorithm based on recursive least square (RLS) for ECG signals. The algorithm trains the ESN through the RLS method, and can automatically learn the deep nonlinear and differentiated characteristics in the noisy ECG data, and then the network can use these characteristic to separate out clear ECG signals automatically. In the experiment, the proposed method is compared with the wavelet transform with subband dependent threshold and the S-transform method by evaluating the signal-to-noise ratio and root mean square error. Experimental results show that the denoising accuracy is better and the low frequency component of the signal is well preserved. This method can effectively filter out complex noise and effectively preserve the effective information of ECG signals, which lays a foundation for the recognition of ECG signal feature waveform and the intelligent diagnosis of cardiovascular disease.

摘要

在远程医疗过程中,心电图(ECG)很容易被复杂环境中的噪声淹没,这影响了心血管疾病的智能诊断。针对这种情况,本文提出了一种基于递归最小二乘法(RLS)的用于心电图信号的回声状态网络(ESN)去噪算法。该算法通过RLS方法训练ESN,能够自动学习有噪声的心电图数据中的深度非线性和微分特征,然后网络可以利用这些特征自动分离出清晰的心电图信号。在实验中,通过评估信噪比和均方根误差,将所提方法与具有子带相关阈值的小波变换和S变换方法进行了比较。实验结果表明,该去噪方法精度更高,且信号的低频成分得到了很好的保留。该方法能够有效滤除复杂噪声,有效保留心电图信号的有效信息,为心电图信号特征波形识别及心血管疾病的智能诊断奠定了基础。

相似文献

1
[An echo state network algorithm based on recursive least square for electrocardiogram denoising].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Aug 25;35(4):539-549. doi: 10.7507/1001-5515.201710072.
2
Stationary wavelet transform based ECG signal denoising method.
ISA Trans. 2021 Aug;114:251-262. doi: 10.1016/j.isatra.2020.12.029. Epub 2020 Dec 15.
3
A new modified wavelet-based ECG denoising.
Comput Assist Surg (Abingdon). 2019 Oct;24(sup1):174-183. doi: 10.1080/24699322.2018.1560088. Epub 2019 Jan 28.
5
Power-line interference and baseline wander elimination in ECG using VMD and EWT.
Comput Methods Biomech Biomed Engin. 2024 Nov;27(15):2111-2130. doi: 10.1080/10255842.2023.2271608. Epub 2023 Oct 27.
7
A Novel ECG Denoising Scheme Using the Ensemble Kalman Filter.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2005-2008. doi: 10.1109/EMBC48229.2022.9871884.
8
Electrocardiogram signal denoising based on a new improved wavelet thresholding.
Rev Sci Instrum. 2016 Aug;87(8):084303. doi: 10.1063/1.4960411.
9
A stacked contractive denoising auto-encoder for ECG signal denoising.
Physiol Meas. 2016 Dec;37(12):2214-2230. doi: 10.1088/0967-3334/37/12/2214. Epub 2016 Nov 21.
10
Variational mode decomposition based ECG denoising using non-local means and wavelet domain filtering.
Australas Phys Eng Sci Med. 2018 Dec;41(4):891-904. doi: 10.1007/s13246-018-0685-0. Epub 2018 Sep 6.

引用本文的文献

1
[Detection of inferior myocardial infarction based on densely connected convolutional neural network].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Feb 25;37(1):142-149. doi: 10.7507/1001-5515.201904028.

本文引用的文献

1
ECG data compression using a neural network model based on multi-objective optimization.
PLoS One. 2017 Oct 3;12(10):e0182500. doi: 10.1371/journal.pone.0182500. eCollection 2017.
2
ECG signal denoising via empirical wavelet transform.
Australas Phys Eng Sci Med. 2017 Mar;40(1):219-229. doi: 10.1007/s13246-016-0510-6. Epub 2016 Dec 29.
3
Detection of occult paroxysmal atrial fibrillation.
Med Biol Eng Comput. 2015 Apr;53(4):287-97. doi: 10.1007/s11517-014-1234-y. Epub 2014 Dec 14.
4
ECG signal enhancement using S-Transform.
Comput Biol Med. 2013 Jul;43(6):649-60. doi: 10.1016/j.compbiomed.2013.02.015. Epub 2013 Apr 15.
5
[Extraction of the EEG signal feature based on echo state networks].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2012 Apr;29(2):206-11.
6
Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication.
Science. 2004 Apr 2;304(5667):78-80. doi: 10.1126/science.1091277.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验