Suppr超能文献

一种用于确定大无序蛋白质结构组合的方法:在机械敏感蛋白中的应用。

A Method for Determining Structure Ensemble of Large Disordered Protein: Application to a Mechanosensing Protein.

机构信息

Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , Singapore 117543 , Singapore.

School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551 , Singapore.

出版信息

J Am Chem Soc. 2018 Sep 12;140(36):11276-11285. doi: 10.1021/jacs.8b04792. Epub 2018 Aug 28.

Abstract

Structure characterization of intrinsically disordered proteins (IDPs) remains a key obstacle in understanding their functional mechanisms. Due to the highly dynamic feature of IDPs, structure ensembles instead of static unique structures are often derived from experimental data. Several state-of-the-art computational methods have been developed to select an optimal ensemble from a pregenerated structure pool, but they suffer from low efficiency for large IDPs. Here we present a matching pursuit genetic algorithm (MPGA) for structure ensemble determination, which takes advantages from both matching pursuit (MP) to reduce the search space and genetic algorithm (GA) to reduce the restriction on constraint types. The MPGA method is validated using a reference ensemble with predefined structures. In comparison with the conventional GA, MPGA takes much less computational time for large IDPs. The utility of the method is demonstrated by application to structure ensemble determination of a mechanosensing protein domain with 306 amino acids. The structure ensemble determined reveals that the N-terminal region 1-240 is more compact than the C-terminal region 240-306. The unique structural feature explains why only a small portion of YXXP tyrosine residues can be phosphorylated easily by kinases in the absence of extension force and why the phosphorylation is force-dependent.

摘要

无规则蛋白质(IDPs)的结构特征仍然是理解其功能机制的关键障碍。由于 IDPs 的高度动态特性,通常从实验数据中得出的是结构集合而不是静态的唯一结构。已经开发了几种最先进的计算方法来从预生成的结构池中选择最佳集合,但对于大型 IDPs 来说,它们的效率很低。在这里,我们提出了一种用于结构集合确定的匹配追踪遗传算法(MPGA),它利用匹配追踪(MP)来缩小搜索空间和遗传算法(GA)来减少对约束类型的限制。使用具有预定义结构的参考集合验证了 MPGA 方法。与传统的 GA 相比,MPGA 对于大型 IDPs 计算时间更少。该方法的实用性通过应用于具有 306 个氨基酸的机械敏感蛋白结构集合的确定来证明。确定的结构集合表明,N 端区域 1-240 比 C 端区域 240-306 更紧凑。独特的结构特征解释了为什么只有一小部分 YXXP 酪氨酸残基在没有延伸力的情况下很容易被激酶磷酸化,以及为什么磷酸化是力依赖性的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验