Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Phys Chem Chem Phys. 2018 Aug 29;20(34):22296-22307. doi: 10.1039/c8cp04241a.
Hybrid photocatalysts containing plasmonic metal and semiconductor building blocks can alleviate charge carrier recombination and broaden the range of light absorption of the semiconductor. In this work, plasmonic Au nanocrystals of different sizes and shapes (spheres and rods) are attached on graphitic carbon nitride (g-C3N4) nanosheets through electrostatic attraction. The effects of the morphology and loading amount of the Au nanocrystals are carefully studied for understanding and optimizing the hybrid photocatalysts. The optimized 18 nm-sized Au nanospheres/g-C3N4 photocatalyst exhibits a superior activity for H2 evolution at a rate of 540 μmol g-1 h-1 under visible light (λ > 420 nm), exceeding those produced over larger-sized Au nanospheres/g-C3N4, Au nanorods/g-C3N4 and photodeposited Au nanoparticles/g-C3N4 photocatalysts. The excellent activity for H2 evolution is attributed to the electron sink and plasmonic effects of the Au nanocrystals in different spectral regions, as evidenced by photocurrent measurements. The introduced plasmonic Au nanocrystals not only enhance the photocatalytic activity, but they also endow the hybrid photocatalysts with an extended light absorption range. Our results and understanding will be useful for the design of efficient plasmonic photocatalysts for solar to fuel energy conversion as well as for other plasmon-driven chemical reactions.
含有等离子体金属和半导体构建块的杂化光催化剂可以缓解载流子复合,并拓宽半导体的光吸收范围。在这项工作中,通过静电吸引将不同尺寸和形状(球体和棒体)的等离子体 Au 纳米晶体附着在石墨相氮化碳(g-C3N4)纳米片上。仔细研究了 Au 纳米晶体的形态和负载量的影响,以理解和优化杂化光催化剂。优化的 18nm 尺寸的 Au 纳米球/g-C3N4 光催化剂在可见光(λ>420nm)下表现出优异的 H2 析出活性,速率为 540μmol g-1 h-1,超过了较大尺寸的 Au 纳米球/g-C3N4、Au 纳米棒/g-C3N4 和光沉积 Au 纳米粒子/g-C3N4 光催化剂。优异的 H2 析出活性归因于不同光谱区域 Au 纳米晶体的电子阱和等离子体效应,这可通过光电流测量得到证明。引入的等离子体 Au 纳米晶体不仅提高了光催化活性,而且赋予了杂化光催化剂扩展的光吸收范围。我们的结果和理解将有助于设计用于太阳能到燃料能量转换的高效等离子体光催化剂以及其他等离子体驱动的化学反应。