Gao Manyi, Tian Fenyang, Zhang Xin, Chen Zhaoyu, Yang Weiwei, Yu Yongsheng
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China.
Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
Nanomicro Lett. 2023 May 20;15(1):129. doi: 10.1007/s40820-023-01098-2.
Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a "holy grail" for researchers, but is still a challenging issue. Herein, based on the common polymeric carbon nitride (PCN), a hybrid co-catalysts system comprising plasmonic Au nanoparticles (NPs) and atomically dispersed Pt single atoms (PtSAs) with different functions was constructed to address this challenge. For the dual co-catalysts decorated PCN (PtSAs-Au/PCN), the PCN is photoexcited to generate electrons under UV and short-wavelength visible light, and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H evolution. Furthermore, the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance, and the adjacent PtSAs trap the plasmonic hot-electrons for H evolution via direct electron transfer effect. Consequently, the PtSAs-Au/PCN exhibits excellent broad-spectrum photocatalytic H evolution activity with the H evolution rate of 8.8 mmol g h at 420 nm and 264 μmol g h at 550 nm, much higher than that of Au/PCN and PtSAs-PCN, respectively. This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.
合理设计能够捕获整个可见光区域光子并提高太阳能转换效率的广谱光催化剂,是研究人员的“圣杯”,但仍是一个具有挑战性的问题。在此,基于常见的聚合氮化碳(PCN),构建了一种由具有不同功能的等离子体金纳米颗粒(NPs)和原子分散的铂单原子(PtSAs)组成的混合助催化剂体系,以应对这一挑战。对于双助催化剂修饰的PCN(PtSAs-Au/PCN),PCN在紫外光和短波长可见光下被光激发产生电子,协同作用的金纳米颗粒和铂单原子不仅通过肖特基结和金属-载体键加速电荷分离和转移,还作为析氢的助催化剂。此外,金纳米颗粒由于其局域表面等离子体共振吸收长波长可见光,相邻的铂单原子通过直接电子转移效应捕获等离子体热电子用于析氢。因此,PtSAs-Au/PCN表现出优异的广谱光催化析氢活性,在420nm处析氢速率为8.8 mmol g h,在550nm处为264 μmol g h,分别远高于Au/PCN和PtSAs-PCN。这项工作为设计用于能量转换反应的广谱光催化剂提供了一种新策略。