Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan.
Graduate School of Brain Science, Doshisha University, Kyo-Tanabe, Kyoto, Japan.
J Neurochem. 2018 Dec;147(6):748-763. doi: 10.1111/jnc.14571. Epub 2018 Nov 11.
Purkinje cells (PCs) convey the sole output of the cerebellar cortex to the deep cerebellar nuclei (DCN). DCN neurons are enwrapped in densely organized extracellular matrix structures, known as perineuronal nets (PNNs). PNNs are typically found around fast-spiking GABAergic interneurons expressing parvalbumin but interestingly also exist surrounding other neurons, such as the neurons in the DCN and medial nucleus of the trapezoid body, which are the post-synaptic neurons of large axo-somatic synapses adapted for fast signaling. This characteristic localization prompted the hypothesis that PNNs might play a role in the maintenance and formation of large fast-signaling synapses. To elucidate the role of the PNN at these synapses, we investigated the electrophysiological and morphological properties of DCN synapses in hyaluronan and proteoglycan binding link protein 4 (Hapln4/Bral2) knockout (KO) mice around postnatal day (P)14. Hapln4/Bral2 is important for PNN structure, as it stabilizes the interaction between hyaluronan and proteoglycan. Here, using immunohistochemistry we show that Hapln4/Bral2 localized closely with GABAergic terminals. In DCN neurons of Hapln4/Bral2 KO mice, inhibitory synaptic strengths were reduced as compared to those in wild-type mice, whereas the properties of excitatory synapses were unaffected. The reduced IPSC amplitudes were mainly because of reduced numbers of releasable vesicles. Moreover, Hapln4/Bral2 deficiency reduced the number of PC GABAergic terminals in the DCN. These results demonstrate that Hapln4/Bral2 is a PNN component that selectively contributes to formation and transmission of PC-DCN synapses in the cerebellum. OPEN SCIENCE BADGES: This article has received a badge for Open Materials because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
浦肯野细胞 (PCs) 将小脑皮层的唯一输出传递到小脑深部核团 (DCN)。DCN 神经元被包裹在高度组织化的细胞外基质结构中,称为神经周围网络 (PNN)。PNN 通常存在于表达 parvalbumin 的快速放电 GABA 能中间神经元周围,但有趣的是,它们也存在于其他神经元周围,例如 DCN 和梯形束内侧核中的神经元,这些神经元是适应快速信号传递的大轴突-体突触的突触后神经元。这种特征性定位促使人们假设 PNN 可能在维持和形成大快速信号传递突触中发挥作用。为了阐明 PNN 在这些突触中的作用,我们研究了透明质酸和蛋白聚糖结合连接蛋白 4 (Hapln4/Bral2) 敲除 (KO) 小鼠在出生后第 14 天 (P) 时 DCN 突触的电生理和形态特性。Hapln4/Bral2 对于 PNN 结构很重要,因为它稳定了透明质酸和蛋白聚糖之间的相互作用。在这里,我们使用免疫组织化学方法显示 Hapln4/Bral2 与 GABA 能末梢紧密定位。在 Hapln4/Bral2 KO 小鼠的 DCN 神经元中,与野生型小鼠相比,抑制性突触强度降低,而兴奋性突触的特性不受影响。IPSC 幅度的降低主要是由于可释放囊泡的数量减少。此外,Hapln4/Bral2 缺乏减少了 DCN 中的 PC GABA 能末梢数量。这些结果表明,Hapln4/Bral2 是 PNN 的一个组成部分,它选择性地促进小脑浦肯野细胞-DCN 突触的形成和传递。开放科学徽章:本文获得了“开放材料”徽章,因为它提供了重现本文研究所需的所有相关信息。本文的完整开放科学披露表格可以在文章末尾找到。有关开放实践徽章的更多信息可以在 https://cos.io/our-services/open-science-badges/ 找到。