Sando Yusuke, Barada Daisuke, Jackin Boaz Jessie, Yatagai Toyohiko
Appl Opt. 2018 Aug 10;57(23):6781-6787. doi: 10.1364/AO.57.006781.
The diffraction integral onto a spherical surface is discussed in the three-dimensional (3D) Fourier domain of the 3D object used. The diffraction integral is expressed in the form of the convolution integral between the partial Fourier components of the 3D object and the kernel function defined on the sphere. This two-dimensional convolution on the sphere can be calculated rapidly based on the convolution theorem by performing spherical harmonic transform instead of Fourier transform. This paper presents a detailed derivation of this diffraction integral and analyzes the sampling pitch required for handing the data on the sphere. Our proposed method is verified using a simple simulation of Young's interference experiment. Moreover, a numerical simulation with a more complicated 3D object is demonstrated. Our proposed method speeds up the calculation of the diffraction integral by more than 6,000 times compared with the direct calculation method.
在所用三维物体的三维傅里叶域中讨论了球面衍射积分。衍射积分以三维物体的部分傅里叶分量与球面上定义的核函数之间的卷积积分形式表示。基于卷积定理,通过执行球谐变换而非傅里叶变换,可以快速计算球面上的二维卷积。本文给出了该衍射积分的详细推导,并分析了处理球面上数据所需的采样间距。通过对杨氏干涉实验进行简单模拟,验证了我们提出的方法。此外,还展示了对更复杂三维物体的数值模拟。与直接计算方法相比,我们提出的方法将衍射积分的计算速度提高了6000倍以上。