MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Institute of Chemistry for New Energy Materials, Department of Chemistry, School of Science , Xi'an Jiaotong University , Xi'an 710049 , People's Republic of China.
Department of Applied Chemistry, College of Chemistry & Pharmacy , Northwest A&F University , Yangling 712100 , People's Republic of China.
Inorg Chem. 2018 Sep 4;57(17):11027-11043. doi: 10.1021/acs.inorgchem.8b01639. Epub 2018 Aug 21.
With the aim of evaluating the potential of selenium-containing groups in developing electroluminescent (EL) materials, a series of asymmetric heteroleptic Ir(III) phosphorescent complexes (Ir-Se0F, Ir-Se1F, Ir-Se2F, and Ir-Se3F) have been synthesized by using 2-selenophenylpyridine and one ppy-type (ppy = 2-phenylpyridine) ligand with a fluorinated selenide group. To the best of our knowledge, these complexes represent unprecedented examples of asymmetric heteroleptic Ir(III) phosphorescent emitters bearing selenium-containing groups. Natural transition orbital (NTO) analysis based on optimized geometries of the first triplet state (T) have shown that the phosphorescent emissions of these Ir(III) complexes dominantly show π-π* features of the 2-selenophenylpyridine ligand with slight metal to ligand charge transfer (MLCT) contribution. In comparison with their symmetric parent complex Ir-Se with two 2-selenophenylpyridine ligands, these asymmetric heteroleptic Ir(III) phosphorescent complexes can show much higher phosphorescent quantum yields (Φ) of ca. 0.90. Both the hole- and electron-trapping ability of these Ir(III) phosphorescent complexes can be enhanced by selenophene and fluorinated selenide groups to improve their EL efficiencies. The EL abilities of these asymmetric heteroleptic Ir(III) phosphorescent emitters fall in the order Ir-Se3F > Ir-Se2F > Ir-Se1F > Ir-Se0F. The highest EL efficiencies have been achieved by Ir-Se3F in the solution-processed OLEDs with external quantum efficiency (η), current efficiency (η), and power efficiency (η) of 19.9%, 65.6 cd A, and 57.3 lm W, respectively. These encouraging EL results clearly indicate the great potential of selenium-containing groups in developing high-performance Ir(III) phosphorescent emitters.
为了评估含硒基团在开发电致发光(EL)材料方面的潜力,我们合成了一系列不对称杂环 Ir(III)磷光配合物(Ir-Se0F、Ir-Se1F、Ir-Se2F 和 Ir-Se3F),这些配合物是通过使用 2-硒代苯基吡啶和一个带有氟代硒化物基团的 ppy 型配体(ppy=2-苯基吡啶)合成的。据我们所知,这些配合物代表了具有含硒基团的前所未有的不对称杂环 Ir(III)磷光发射体实例。基于优化的第一三重态(T)的自然过渡轨道(NTO)分析表明,这些 Ir(III)配合物的磷光发射主要显示出 2-硒代苯基吡啶配体的π-π*特征,只有轻微的金属到配体电荷转移(MLCT)贡献。与它们的对称母体配合物 Ir-Se(两个 2-硒代苯基吡啶配体)相比,这些不对称杂环 Ir(III)磷光配合物可以显示出高达约 0.90 的磷光量子产率(Φ)。通过硒吩和氟代硒化物基团,这些 Ir(III)磷光配合物的空穴和电子捕获能力可以增强,从而提高它们的 EL 效率。这些不对称杂环 Ir(III)磷光发射体的 EL 能力顺序为 Ir-Se3F > Ir-Se2F > Ir-Se1F > Ir-Se0F。在溶液处理的 OLED 中,Ir-Se3F 实现了最高的 EL 效率,外量子效率(η)、电流效率(η)和功率效率(η)分别为 19.9%、65.6 cd A 和 57.3 lm W。这些令人鼓舞的 EL 结果清楚地表明了含硒基团在开发高性能 Ir(III)磷光发射体方面的巨大潜力。