From the Florey Institute of Neuroscience and Mental Health.
Department of Biochemistry and Molecular Biology, and.
J Biol Chem. 2018 Oct 12;293(41):15777-15789. doi: 10.1074/jbc.RA118.002645. Epub 2018 Aug 21.
The relaxin-3 neuropeptide activates the relaxin family peptide 3 (RXFP3) receptor to modulate stress, appetite, and cognition. RXFP3 shows promise as a target for treating neurological disorders, but realization of its clinical potential requires development of smaller RXFP3-specific drugs that can penetrate the blood-brain barrier. Designing such drugs is challenging and requires structural knowledge of agonist- and antagonist-binding modes. Here, we used structure-activity data for relaxin-3 and a peptide RXFP3 antagonist termed R3 B1-22R to guide receptor mutagenesis and develop models of their binding modes. RXFP3 residues were alanine-substituted individually and in combination and tested in cell-based binding and functional assays to refine models of agonist and antagonist binding to active- and inactive-state homology models of RXFP3, respectively. These models suggested that both agonists and antagonists interact with RXFP3 via similar residues in their B-chain central helix. The models further suggested that the B-chain Trp inserts into the binding pocket of RXFP3 and interacts with Trp and Lys, the latter through a salt bridge with the C-terminal carboxyl group of Trp in relaxin-3. R3 B1-22R, which does not contain Trp, used a non-native Arg residue to form cation-π and salt-bridge interactions with Trp and Glu in RXFP3, explaining a key contribution of Arg to affinity. Overall, relaxin-3 and R3 B1-22R appear to share similar binding residues but may differ in binding modes, leading to active and inactive RXFP3 conformational states, respectively. These mechanistic insights may assist structure-based drug design of smaller relaxin-3 mimetics to manage neurological disorders.
松弛素-3 神经肽激活松弛素家族肽 3(RXFP3)受体,从而调节应激、食欲和认知。RXFP3 有望成为治疗神经疾病的靶点,但要实现其临床潜力,需要开发能够穿透血脑屏障的更小的 RXFP3 特异性药物。设计此类药物具有挑战性,需要了解激动剂和拮抗剂结合模式的结构知识。在这里,我们使用松弛素-3 的结构活性数据和一种称为 R3 B1-22R 的肽 RXFP3 拮抗剂来指导受体突变,并开发它们的结合模式模型。我们分别和组合地用 RXFP3 的丙氨酸取代残基,并在细胞结合和功能测定中进行测试,以分别改进激动剂和拮抗剂与 RXFP3 的活性和无活性同源模型结合的模型。这些模型表明,激动剂和拮抗剂都通过其 B 链中央螺旋中的相似残基与 RXFP3 相互作用。这些模型进一步表明,B 链色氨酸插入 RXFP3 的结合口袋,并与色氨酸和赖氨酸相互作用,后者通过与松弛素-3 中 B 链色氨酸的 C 末端羧基形成盐桥。不包含色氨酸的 R3 B1-22R 使用非天然的精氨酸残基与 RXFP3 中的色氨酸和谷氨酸形成阳离子-π 和盐桥相互作用,这解释了精氨酸对亲和力的关键贡献。总体而言,松弛素-3 和 R3 B1-22R 似乎具有相似的结合残基,但结合模式可能不同,分别导致活性和无活性的 RXFP3 构象状态。这些机制上的见解可能有助于基于结构的更小的松弛素-3 类似物的药物设计,以治疗神经疾病。